Please wait a minute...
img

官方微信

高级检索
中国沙漠  2020, Vol. 40 Issue (4): 206-215    DOI: 10.7522/j.issn.1000-694X.2020.00055
    
腾格里沙漠南缘花棒(Hedysarum scoparium)人工固沙林演替规律与机制
马全林1,2(), 张锦春1,2(), 陈芳1, 张德魁1, 魏林源1
1.甘肃省治沙研究所,荒漠化与风沙灾害防治国家重点实验室培育基地,甘肃 兰州 730070
2.甘肃省治沙研究所,民勤荒漠草地生态系统国家野外科学观测研究站,甘肃 兰州 730070
Mechanism and dynamics for succession of artificial Hedysarum scoparium sand-binding forests at the southern edge of Tengger Desert
Quanlin Ma1,2(), Jinchun Zhang1,2(), Fang Chen1, Dekui Zhang1, Linyuan Wei1
1.State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating /, Gansu Desert Control Research Institute,Lanzhou 730070, China
2.Minqin National Studies Station for Desert Steppe Ecosystem, Gansu Desert Control Research Institute,Lanzhou 730070, China
 全文: PDF(1530 KB)   HTML
摘要:

人工固沙林演替决定着固沙造林的成效。在腾格里沙漠南缘,应用空间代替时间的方法,选择造林封育5、15、25年花棒(Hedysarum scoparium)人工固沙林,对照流动沙丘和地带性植被样地,从生态水文、土壤种子库、土壤-植被相互关系等方面研究了人工固沙林演替的生态学机制,为区域人工固沙植被建设、保护和修复提供理论依据。结果表明:腾格里沙漠南缘花棒人工固沙林演替过程中,花棒、沙米(Agriophyllum squarrosum)和沙蒿(Artemisia rtemisia sphaerocephala)逐渐退出,自然优势种由一年生草本植物向半灌木、半灌木与多年生草本植物演替,25年后形成相对稳定的近自然固沙植被,呈现向草原化荒漠演替的趋势,但与地带性植被相似性只达到50%。表层土壤持水力持续增强,25年后达到流动沙丘的3.4倍,引起土壤水分浅层化和深层土壤干旱,驱动了深根系植物的衰亡和浅根性草本植物的发展。土壤种子库中沙米和沙蒿快速减少,并在造林25年后消失;油蒿(Artemisia ordosica)持续增加,短花针茅(Stipa breviflora)在25年后出现;土壤种子库与地上植被组成的相似性超过50%,驱动人工固沙林向油蒿+多年生草本植被演替。伴随人工固沙林植被演替,土壤容重持续降低,黏粒、粉粒、有机质和全氮含量持续增大,与人工固沙林群落、物种组成形成密切的对应关系,决定了固沙林演替阶段和物种组成。固沙造林启动并加速了自然植被的恢复演替,是干旱区沙化土地生态恢复的必要措施,但要充分考虑地带性植被和生境条件,以快速建立稳定的近自然植被。

关键词: 花棒固沙林土壤水分含量土壤种子库腾格里沙漠    
Abstract:

The succession of sand-binding forest impacts the construction effect of sand fixation forest. With the method of substituting time with space, the artificial sand-binding forests afforested for 5, 15 and 25 years at the southern edge of Tengger Desert were selected as a success stage series, and the adjacent mobile sand dune and native vegetation habitat were took as the reference sites to reveal the ecological mechanism of the succession of artificial sand-binding forests from the aspects of ecological hydrology, soil seed bank and soil-vegetation corresponding relationship, which provided theoretical basis for the construction, protection and restoration of regional artificial sand-binding vegetation. The results showed that during the successional process of artificial sand-binding forest of Hedysarum scoparium in the southern edge of Tengger Desert, the artificial population of H. scoparium, pioneer plants Agriophyllum squarrosum and Artemisia sphaerocephala declined gradually, and the natural dominant species changed from annual herbs to semi shrubs, then to semi shrubs and perennial herbs. After 25 years, a relatively stable near natural sand-binding vegetation similar to the zonal vegetation up to 50% was formed, which showed a trend of grassland desertification succession. During the successional process of artificial sand-binding forest, the topsoil water holding capacity increased continually, reaching 3.4 times of that of the mobile sand dunes after 25 years, which resulted in the shallow distribution of soil moisture and the drought of the deep soil, driving the decline of the deep root plants and the development of the shallow root herbs. A. squarrosum and A. sphaerocephala in the soil seed bank decreased rapidly and disappeared after 25 years; A. ordosica continued to increase and Stipa breviflora appeared after 25 years, which was more than 50% similar to the aboveground vegetation composition, driving the artificial sand-binding forest to A. ordosica vegetation with perennial herbs. With the succession of artificial sand-binding forest, soil bulk density continued to decrease, clay, silt, organic matter and total nitrogen continued to increase, which was closely related to the community and species composition of artificial sand-binding forest, and determined the succession stage and species composition of sand-binding forest. Obviously, sand fixation and afforestation is a necessary measure for ecological restoration of the desertified land in arid areas, which starts and accelerates the restoration and succession of natural vegetation. However, the zonal vegetation and soil habitat conditions should be fully considered in sand fixation and afforestation, so as to establish stable near natural vegetation quickly.

Key words: Hedysarum scoparium    sand-binding forest    soil water content    soil seed bank    Tengger Desert
收稿日期: 2020-01-03 出版日期: 2020-09-01
:  Q948.15  
基金资助: 国家自然科学基金项目(31660232);国家重点研发计划(SQ2016YFHZ020617);甘肃省科技重大专项(18ZD2FA009)
通讯作者: 张锦春     E-mail: mql925@126.com;zhangjcgs@126.com
作者简介: 张锦春(E-mail: zhangjcgs@126.com
马全林(1974—),男,甘肃陇西人,研究员,博士,主要从事荒漠化防治与生态恢复研究。E-mail: mql925@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马全林
张锦春
陈芳
张德魁
魏林源

引用本文:

马全林, 张锦春, 陈芳, 张德魁, 魏林源. 腾格里沙漠南缘花棒(Hedysarum scoparium)人工固沙林演替规律与机制[J]. 中国沙漠, 2020, 40(4): 206-215.

Quanlin Ma, Jinchun Zhang, Fang Chen, Dekui Zhang, Linyuan Wei. Mechanism and dynamics for succession of artificial Hedysarum scoparium sand-binding forests at the southern edge of Tengger Desert. Journal of Desert Research, 2020, 40(4): 206-215.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2020.00055        http://www.desert.ac.cn/CN/Y2020/V40/I4/206

植被特征流动沙丘MS5年15年25年地带性植被NV
物种数39101015
优势物种及其重要值沙米49.33沙蒿40.67花棒27.00、油蒿19.0、沙蒿13.33、沙米13.33油蒿36.67、禾草47.67油蒿40.33、刺蓬26.27、禾草19.33银灰旋花38.33、短花针茅20.67
植被总盖度/%6.14±1.50c18.11±2.44b40.23±2.47a36.44±1.86a35.48±2.24a
草本盖度/%1.26±0.34c5.22±1.55bc8.02±1.27b8.96±1.85b29.86±2.05a
灌木盖度/%4.89±1.51c14.40±2.24b32.57±2.38a29.90±2.04a7.73±2.11c
地上生物量/(kg·hm-2)91.9±78.7c2095.0±668.9b3790.4±645.3a2305.2±275.6b1484.4±426.5b
地下生物量/(kg·hm-2)401.9±315.0b1667.8±804.7a1944.0±602.4a1720.0±299.8a1711.3±417.4a
物种多样性指数(Shannon-wiener)0.40±0.05c0.85±0.06b0.42±0.04c0.82±0.06b1.17±0.06a
与地带性植被的相似性0.000.200.280.501
表1  花棒人工固沙林植被演替变化(平均值±标准误)
图1  花棒人工固沙林0~300 cm土壤水分含量的垂直变化
剖面深度/cm样地平均值标准误变异系数/%最小值最大值偏度峰度分布类型
0~20流动沙丘MS1.77de0.0520.70.7002.45-0.680.40正态
5年1.52f0.0524.80.542.28-0.40-0.32正态
15年1.05g0.0533.70.372.040.48-0.23正态
25年1.21g0.0319.40.91.891.141.12对数正态
地带性植被NV3.38b0.0919.22.265.221.041.38对数正态
20~40流动沙丘MS3.01b0.1023.51.14.44-0.34-0.08正态
5年2.11c0.1033.10.94.110.43-0.19正态
15年1.48f0.0732.90.762.650.25-0.93正态
25年1.54f0.0418.21.162.130.55-0.75正态
地带性植被NV5.68a0.079.54.296.940.021.29对数正态
40~60流动沙丘MS2.97b0.1126.01.34.710.16-0.44正态
5年1.87d0.0828.61.053.190.43-0.47正态
15年1.43f0.0733.30.672.690.610.2正态
25年1.59ef0.0521.91.032.580.80.63正态
地带性植被NV5.59a0.088.23.386.48-1.284.80对数正态
表2  花棒人工固沙林浅层土壤水分的统计描述
图2  花棒人工固沙林0~5 cm土壤水分特征曲线
植物种流动沙丘MS5年15年25年地带性植被NV
一年生草本
沙米(Agriophyllum squarrosum藜科56.2±16.212.5±6.76.3±4.13.1±3.1
刺蓬(Salsola ruthenica藜科59.4±59.450±34.1
盐生草(Halogeton arachnoideus藜科6.3±4.1
五星蒿(Bassia dasyphylla藜科3.1±3.16.3±4.153.1±29.7
画眉草(Eragrostis poaeoides禾本科3.1±3.112.5±8.2484.4±110.121.9±7.446.9±21.9
狗尾草(Setaria viridis禾本科6.3±4.181.3±64.6284.4±141.59.4±6.615.6±9.3
虎尾草(Chloris virgata禾本科3.1±3.118.8±13.23.1±3.1
地锦(Euphorbia humifusa大戟科6.3±4.1
黄蒿(Artemisia scoparia菊科9.4±6.637.5±15.7
虫实(Corispermum patelliforme藜科12.5±12.556.3±29.03.1±3.1
多年生草本
短花针茅(Stipa breviflora禾本科6.3±4.131.3±7.8
无芒隐子草(Cleistogenes squarrosa禾本科131.3±117.3
草木樨(Melilotus Offcinalia豆科15.6±9.4
苦豆子(Sophora alopecuroides豆科3.1±3.1
半灌木
油蒿(Artemisia ordosica菊科65.6±36.6190.6±51.5221.9±67.7
沙蒿(Artemisia sphaerocephala菊科75.0±36.284.4±48.2
表3  花棒人工固沙林土壤种子库的种类组成及其密度 (粒· m-2, 平均值±标准误)
图3  花棒人工固沙林土壤种子库与地上植被种类组成的相似性比较MS,流动沙丘;NV,地带性植被
土壤性质第1排 序轴第2排 序轴第3排 序轴
土壤容重/(g·cm-3)0.7829**-0.4433**0.1098
沙粒含量/%-0.08100.03950.4135**
粉粒含量/%-0.5065**0.3246*0.0729
黏粒含量/%-0.4867**0.3287*0.1377
有机质含量/%-0.7264**0.20480.0370
全氮含量/%-0.6064**0.02570.1659
速效磷含量/(kg·mg-10.10220.4178**-0.2637
pH0.8596**0.1885-0.1018
电导率/(μS·cm-1)-0.9062**0.18900.1075
0~20 cm 土壤水分含量/%0.7652**0.19570.0992
20~40 cm 土壤水分含量/%0.9110**0.19970.2168
40~60 cm 土壤水分含量/%0.7695**0.24220.2196
特征值0.8220.2950.116
物种与环境相关系数0.9790.8710.794
累积解释方差58.078.887.0
表4  花棒人工固沙林土壤环境因子与物种排序轴的相关关系、特征值和解释方差
图4  花棒人工固沙林群落样方与土壤环境CCA排序图BK,容重;Sand,沙粒含量;Silt,粉粒含量;Clay,黏粒含量;SOM,有机质;TN,全氮;AP,速效磷;pH,土壤pH值;EC,电导率;SW1,0~20 cm土壤水分含量;SW2,20~40 cm土壤水分含量;SW3,40~60 cm土壤水分含量;MS,流动沙丘;NV,地带性植被
图5  花棒人工固沙林物种分布与土壤环境因子CCA排序图Agd,沙生冰草;Agm,沙竹;Ags,沙米;Ars沙蒿;Aro,油蒿;Bad,五星蒿;Cop,虫实;Herb,一年生禾草;Hes,花棒;Meo,草木樨;Sar,刺蓬;Stb,短花针茅;BK,容重;Sand,沙粒含量;Silt,粉粒含量;Clay,黏粒含量;SOM,有机质;TN,全氮;AP,速效P;pH,土壤pH值;EC,电导率;SW1,0~20 cm土壤水分含量;SW2,20~40 cm土壤水分含量;SW3,40~60 cm土壤水分含量
1 Le Houe´rou H N.Restoration and rehabilitation of arid and semiarid Mediterranean ecosystems in North Africa and West Asia:a review[J].Arid Soil Research and Rehabilitation,2000,14:3-14.
2 Li X R,Xiao H L,Zhang J G,et al.Ecosystem effects of sand-binding vegetation and restoration of biodiversity in arid region of China[J].Restoration Ecology,2004,12:376-390.
3 黄俊毅.三北工程:沙海变林海[N/OL].经济日报,2019-09-21(6).
4 李新荣,张景光,刘立超,等.我国干旱沙漠地区人工植被与环境演变过程中植物多样性的研究[J].植物生态学报,2000,24(3):257-261.
5 李进,刘志民,李胜功,等.尔沁沙地人工植被建立模式的探讨[J].应用生态学报,1994,5(1):46-51.
6 沈渭寿.沙坡头沙地人工植被演替的群落学特征[J].中国沙漠,1988,8(3):35-40.
7 沈渭寿.毛乌素沙地飞播植被演替的阶段与速度[J].林业科学,1999,35(3):103-108.
8 王继和,马全林.民勤绿洲人工梭梭林退化现状、特征与恢复对策[J].西北植物学报,2003,23(12):2107-2112.
9 徐彩琳,李自珍.干旱荒漠区人工植物群落演替模式及其生态学机制研究[J].应用生态学报,2003,14(9):1451-1456.
10 Li X R,Zhang Z S,Zhang J G,et al.Association between vegetation patterns and soil properties in the Southeastern Tengger Desert,China[J].Arid Land Research and Management,2004,18:369-383.
11 张军,黄永梅,焦会景,等.毛乌素沙地油蒿群落演替的生理生态学机制[J].中国沙漠,2007,27(6):977-983.
12 赵芸,贾荣亮,滕嘉玲,等.腾格里沙漠人工固沙植被演替生物土壤结皮盖度对沙埋的响应[J].生态学报,2017,37(18):6138-6148.
13 马全林,张德魁,刘有军,等.石羊河中游沙漠化逆转过程土壤种子库的动态变化[J].生态学报,2011,31(4):989-997.
14 吴冬秀,韦文珊,张淑敏.陆地生态系统生物观测规范[M].北京:中国环境科学出版社,2007:46-75.
15 赵丽娅,赵哈林.我国沙漠化过程中的植被演替研究概述[J].中国沙漠,2000,20():8-14.
16 Li X R,Xiao H L,Zhang J G,et al.Ecosystem effects of sand-binding vegetation and restoration of biodiversity in arid region of China[J].Restoration Ecology,2004,12:376-390.
17 陈艳瑞,尹林克.人工防风固沙林演替中群落组成和优势种群生态位变化特征[J].植物生态学报,2008,32(5):1126-1133.
18 常兆丰,韩福贵,仲生年,等.民勤沙区人工梭梭林自然稀疏过程研究[J].西北植物学报,2008,28(1):147-154.
19 Li X R,Wang X P,Li T,et al.Microbiotic crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger desert,North China[J].Biology and Fertility of Soils,2002,35:147-154.
20 陈芳,马全林,王继和,等.干旱区沙漠化逆转过程中优势种群及其根系特征研究[J].干旱区资源与环境,2009,23(7):148-153.
21 Li X R,Ma F Y,Xiao H L,et al.Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China[J].Journal of Arid Environments,2004,57:1-16.
22 Milberg P,Hansoon M L.Soil seed bank and species turnover in a limestone grassland[J].Journal of Vegetation Sciences,1993,4:35-42.
23 赵哈林,苏永中,周瑞莲.我国北方沙区退化植被的恢复机理[J].中国沙漠,2006,26(3):323-328.
24 Dodd M B,Lauenroth W K,Burke I C,et al.Association between vegetation patterns and soil texture in the shortgrass steppe[J].Plant Ecology,2002,158:127-137.
25 Sala O E,Lauenroth W K,Golluscio R A.Plant functional types in temperate semiarid regions[M]//Smith T M,Shugart H H,Woodward F I.Plant Functional Types.Cambridge University Press,Cambridge,1997:217-233.
26 慈龙骏.中国的荒漠化及其防治[M].北京:高等教育出版社,2005.
27 季志平,苏印泉,刘建军.黄土高原的生态恢复与支撑体系初探[J].西北林学院学报,2005,20(4):5,9-13.
[1] 王文帆, 刘任涛, 郭志霞, 冯永宏, 蒋嘉瑜. 腾格里沙漠东南缘固沙灌丛林土壤理化性质及分形维数[J]. 中国沙漠, 2021, 41(1): 209-218.
[2] 王炳尧, 刘星辰, 刘立超. 1957—2017年腾格里沙漠地区降水量[J]. 中国沙漠, 2020, 40(4): 163-170.
[3] 陈应武, 陈庆霄, 杨昊天. 腾格里沙漠陆生野生脊椎动物多样性及区系[J]. 中国沙漠, 2020, 40(4): 171-182.
[4] 颜长珍, 李森, 逯军峰, 刘立超. 1975—2015年腾格里沙漠湖泊面积与数量[J]. 中国沙漠, 2020, 40(4): 183-189.
[5] 陈芳, 马全林, 魏林源, 张德魁, 袁宏波, 丁峰, 胡小柯, 张忠. 沙米(Agriophyllum squarrosum)种子库空间分布和影响因素[J]. 中国沙漠, 2020, 40(4): 190-196.
[6] 王新友, 马全林, 王耀琳. 石羊河流域人工防护林碳效益估算[J]. 中国沙漠, 2020, 40(4): 197-205.
[7] 陈应武, 陈庆霄, 杨昊天. 腾格里沙漠昆虫多样性及区系特征[J]. 中国沙漠, 2020, 40(4): 216-222.
[8] 李得禄, 马全林, 张锦春, 陈芳, 李新荣, 袁宏波, 魏林源, 杨昊天, 张忠. 腾格里沙漠植被特征[J]. 中国沙漠, 2020, 40(4): 223-233.
[9] 王岩松, 刘玉冰, 王增如, 赵丽娜, 漆婧华, 张雯莉. 生物土壤结皮铁代谢微生物组成及其功能基因对演替的响应[J]. 中国沙漠, 2020, 40(3): 193-200.
[10] 杨利贞, 冯丽, 杨贵森, 黄磊. 柠条(Caragana korshinskii)、油蒿(Artemisia ordosica)、花棒(Hedysarum scoparium)叶片吸水潜力及影响因素[J]. 中国沙漠, 2020, 40(2): 214-221.
[11] 马晓俊, 李云飞. 腾格里沙漠东南缘植被恢复过程中土壤微生物量及酶活性[J]. 中国沙漠, 2019, 39(6): 159-166.
[12] 李云飞, 谢婷, 石万里, 李小军. 腾格里沙漠东南缘人工固沙植被区表层土壤有机碳矿化对凋落物添加的响应[J]. 中国沙漠, 2019, 39(5): 200-209.
[13] 曹志宏, 安成邦, 高信娟. 1426—1949年腾格里沙漠边缘区旱涝灾害初探[J]. 中国沙漠, 2019, 39(1): 171-178.
[14] 张正偲, 董治宝, 管梦鸾. 腾格里沙漠东南缘反向沙丘形态演化过程[J]. 中国沙漠, 2018, 38(4): 709-715.
[15] 都军, 李宜轩, 杨晓霞, 李云飞, 马晓俊. 腾格里沙漠东南缘生物土壤结皮对土壤理化性质的影响[J]. 中国沙漠, 2018, 38(1): 111-116.