img

官方微信

高级检索

中国沙漠 ›› 2025, Vol. 45 ›› Issue (2): 275-283.DOI: 10.7522/j.issn.1000-694X.2025.00015

• • 上一篇    

20002020年干旱梯度下西北干旱半干旱区植被突变及归因

钟诗瑶(), 李传华(), 乔鹏飞   

  1. 西北师范大学 地理与环境科学学院,甘肃 兰州 730070
  • 收稿日期:2025-01-03 修回日期:2025-02-03 出版日期:2025-03-20 发布日期:2025-03-26
  • 通讯作者: 李传华
  • 作者简介:钟诗瑶(1999—),女,浙江温州人,硕士研究生,主要研究方向为生态遥感与GIS。E-mail: zsy984792043@163.com
  • 基金资助:
    国家自然科学基金项目(42161058)

Vegetation abrupt changes and attribution in the arid and semi-arid regions of Northwest China under aridity gradients from 2000 to 2020

Shiyao Zhong(), Chuanhua Li(), Pengfei Qiao   

  1. College of Geography and Environmental Science,Northwest Normal University,Lanzhou 730070,China
  • Received:2025-01-03 Revised:2025-02-03 Online:2025-03-20 Published:2025-03-26
  • Contact: Chuanhua Li

摘要:

干旱区及干旱梯度下植被突变及其驱动因素的研究尚不充分,研究植被突变及其影响因子对科学制定旱地生态系统管理政策具有重要意义。基于2000—2020年增强型植被指数(EVI)序列数据,采用多模型轨迹诊断方法探测西北干旱半干旱区植被突变,通过阈值参数判断植被突变方向,并使用偏最小二乘结构方程模型(PLS-SEM)进行归因分析。结果表明:西北干旱半干旱区有21.99%区域的植被发生突变,其中正向突变占78.28%,负向突变占21.72%;极端干旱与干旱区正向突变率最高,半湿润区负向突变率最高。人口足迹和降水量是导致植被正向和负向突变的主要驱动因素。半湿润区、半干旱区和干旱与极端干旱区植被突变的主要因子分别是温度、降水和人类活动;随着干旱梯度增加,人口足迹对突变的贡献度显著增加,降水的贡献呈先增加后减少趋势。

关键词: 植被突变, 结构方程模型, 驱动因子, 人类活动

Abstract:

The research on vegetation abrupt changes and their driving factors in arid regions and along aridity gradients is still insufficient. Studying vegetation abrupt changes and their influencing factors is of significant importance for the scientific formulation of dryland ecosystem management policies. This study uses the enhanced vegetation index (EVI) sequence data of China from 2000 to 2020 to detect vegetation abrupt changes by employing a multi-model trajectory diagnosis method. The direction of vegetation abrupt changes is determined based on threshold parameters, and attribution analysis is conducted using the partial least squares structural equation modeling (PLS-SEM). The results indicate that 21.99% of the vegetation in the arid and semi-arid regions of Northwest China experienced abrupt changes, with 78.28% being positive and 21.72% negative. The highest rates of positive abrupt changes were observed in hyper-arid and arid zones, while the highest rate of negative abrupt changes was found in semi-humid zones. Population footprint and precipitation were identified as the primary driving factors for both positive and negative vegetation abrupt changes. The main factors contributing to vegetation abrupt changes in semi-humid, semi-arid, and arid to hyper-arid zones are temperature, precipitation, and human activities, respectively. As the aridity gradient increases, the contribution of population footprint to abrupt changes significantly rises, while the contribution of precipitation shows an initial increase followed by a decrease.

Key words: vegetation abrupt change, structural equation modeling, driving factors, human activities

中图分类号: