Please wait a minute...
img

官方微信

高级检索
中国沙漠  2018, Vol. 38 Issue (2): 352-362    DOI: 10.7522/j.issn.1000-694X.2016.00153
生物与土壤     
西鄂尔多斯荒漠灌丛生态系统碳密度
党晓宏1,2, 高永1, 蒙仲举1, 高君亮3, 丁延龙1, 王祯仪1
1. 内蒙古农业大学 沙漠治理学院/中央与地方共建风沙物理重点实验室, 内蒙古 呼和浩特 010018;
2. 内蒙古杭锦荒漠生态系统国家定位观测研究站, 内蒙古 鄂尔多斯 017400;
3. 中国林业科学研究院 沙漠林业实验中心, 内蒙古 巴彦淖尔 015200
Carbon Density in Dominant Desert Shrub Species Ecosystem in West Ordos Region
Dang Xiaohong1,2, Gao Yong1, Meng Zhongju1, Gao Junliang3, Ding Yanlong1, Wang Zhenyi1
1. Desert Science and Engineering College/Wind Erosion Key Laboratory of Central and Local Government, Inner Mongolia Agriculture University, Hohhot 010018, China;
2. Hangjin Desert Ecological Position Research Station, Erdos 017400, Inner Mongolia, China;
3. Experimental Center of Desert Forestry, Chinese Academy of Forestry, Bayannur 015200, Inner Mongolia, China
 全文: PDF(2077 KB)  
摘要: 为了估算西鄂尔多斯天然荒漠灌丛生态系统碳密度并揭示碳储量在不同层片(灌丛植株、草本层、枯落物层及土壤层)、器官间的分配规律,以该区5种优势荒漠灌丛(沙冬青Ammopiptanthus mogolicus、霸王Zygophyllum xanthoxylum、四合木Tetraena mongolica、半日花Helianthemum songaricum和红砂Reaumuria songarica)群落为对象,测定了5种灌丛生态系统碳密度。结果表明:西鄂尔多斯5种荒漠灌丛生态系统碳密度40.28~55.51 t·hm-2,其中土壤层碳密度占绝对优势(97.15%~98.51%),为39.40~54.48 t·hm-2,且在0~50 cm随着土层深度的增加而增加;植被层生物量密度垂直分布格局表现为灌丛层 > 草本层 > 枯落物层,灌丛层碳密度空间上表现为距离黄河越近碳密度越大(沙冬青和半日花灌丛生物量碳分别占各自植被层生物量密度的92.16%和62.42%),而草本层碳密度表现出与之相反的规律;草本层根系生物量碳也是灌丛生态系统碳重要组成部分,碳密度8.41~38.29 g·m-2,占植被层碳密度的5.36%~45.18%;除红砂灌丛外,灌丛草本层地下部分碳密度显著高于地上部分(P<0.05);灌丛个体碳储量分布表现为枝条 > 根系 > 叶片,粗枝和粗根是单株灌丛碳储量的主要贡献者,且在灌丛种间差异显著(P<0.05),根系生物量碳占植被层碳储量的20.00%~33.53%,叶片生物量碳占总植被层碳储量的2.02%~24.54%。
关键词: 荒漠灌丛碳密度生态系统碳汇鄂尔多斯    
Abstract: To estimate carbon storage of natural desert shrub ecosystem in west Ordos plateau and reveal the distribution rules in different layers (shrub, herb, litter and soil) and organs of each shrub species, we set 3-5 sample plots respectively according to typical sampling method in five dominant desert shrub species(Ammopiptanthus mogolicus, Zygophyllum xanthoxylum, Tetraena mongolica, Helianthemum songaricum and Reaumuria songarica) in Yikebulage steppe desert experimental area and measured the carbon storage of desert shrub ecosystem using biomass harvest method. The results showed that the carbon storage differences among five desert shrub ecosystems and its carbon storage was in the range of 40.28-55.51 t hm-2, in which the carbon storage of soil layer was the most(97.15%-98.51%) and the carbon storage was in the range of 40.28-55.51 t·hm-2. The soil carbon storage was increasing with the soil depth. The biomass carbon density in plant layer was shrub layer > herb layer > litter layer. The biomass carbon density of shrub layer was more with the distance increasing to Yellow River and the biomass carbon density of the nearest site of A. mogolicus and the farthest site of H.songaricum was respectively 92.16% and 62.42% of the plant layer. However, the herb layer showed the opposite rule as the shrub layer. The root biomass carbon was the main part of shrub ecosystem and its biomass carbon density was in the range of 8.41-38.29 g·m-2, which was 5.36%-45.18% of plant layer carbon density. Except P. songarica shrub ecosystem, the carbon storage of belowground part in other four desert shrubs was more than aboveground part (P<0.05). The carbon storage of single shrub showed that branches>roots>leaves. The thick root sand branches were the main contributors to carbon storage of single shrub and showed obvious differences among shrub species (P<0.05). The roots and leaves carbon storage was 20.00%-33.53% and 2.02%-24.54% of the total plant layer.
Key words: desert shrub    carbon storage    ecosystem    carbon sequestration    Ordos
收稿日期: 2016-08-16 出版日期: 2018-03-20
ZTFLH:  Q148  
基金资助: 引进国外先进林业科学技术项目(2015-4-22);内蒙古自治区自然科学基金项目(2015MS0301)
通讯作者: 蒙仲举(E-mail:mengzhongju@126.com)     E-mail: mengzhongju@126.com
作者简介: 党晓宏(1986-),男,陕西合阳人,博士,副教授,从事荒漠化防治及荒漠地区碳汇研究。E-mail:dangxiaohong1986@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
党晓宏
高永
蒙仲举
高君亮
丁延龙
王祯仪

引用本文:

党晓宏, 高永, 蒙仲举, 高君亮, 丁延龙, 王祯仪. 西鄂尔多斯荒漠灌丛生态系统碳密度[J]. 中国沙漠, 2018, 38(2): 352-362.

Dang Xiaohong, Gao Yong, Meng Zhongju, Gao Junliang, Ding Yanlong, Wang Zhenyi. Carbon Density in Dominant Desert Shrub Species Ecosystem in West Ordos Region. JOURNAL OF DESERT RESEARCH, 2018, 38(2): 352-362.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2016.00153        http://www.desert.ac.cn/CN/Y2018/V38/I2/352

[1] Reynolds J F.Desertification[J].Biodiversity,2001,2:61-78.
[2] Reynolds J F,Smith D M S,Lambin E F,et al.Global desertification:building a science for dryland development[J].Science,2007,316:847-851.
[3] Lal R.Carbon sequestration in dryland ecosystem[J].Environmental Management,2004,33:528-544.
[4] 王涛.中国沙漠与沙漠化[M].石家庄:河北科学技术出版社,2003.
[5] Schlesinger W H,Reynolds J F,Cunningham G L,et al.Biological feedbacks in global desertification[J].Science,1990,247:1043-1048.
[6] Helldén U,Tottrup C.Regional desertification:a global synthesis[J].Global Planet Change 2008,64:169-76.
[7] Janzen H H.Carbon cycling in earth systems-a soil science perspective[J].Agricultural Ecosystem Environment,2004,104:399-417.
[8] Lal R.Potential of desertification control to sequester carbon and mitigate the greenhouse effect[J].Climate Change,2001,51:35-72.
[9] Yang H T,Li X R,Wang Z R,et al.Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert,northern China[J].Science of Total Environment,2014,478:1-11.
[10] Ryser P,Eek L.Consequences of phenotypic plasticity vs,interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources[J].American Journal of Botany,2000,87:402-411.
[11] Cramer W,Bondeau A,Woodward F I.Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models[J].Global Change Biology,2001,7(4):357-373.
[12] Burquez A,Martinez-Yrizar A,Nunez S,et al.Aboveground biomass in three Sonoran Desert communities:variability within and among sites using replicated plot harvesting[J].Journal of Arid Environments,2010,74(10):1240-1247.
[13] Chapin Ⅲ F S,Matson P A,Mooney H A.Principles of Terrestrial Ecosystem Ecology[M].New York,USA:Springer Verlag,2002.
[14] 吴波,苏志珠,陈仲新.中国荒漠化潜在发生范围的修订[J].中国沙漠,2007,27(6):911-917.
[15] 方精云,郭兆迪.寻找失去的陆地碳汇[J].自然杂志,2007,29(1):1-6.
[16] Fang J Y,Chen A P,Peng C H,et al.Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292:2320-2322.
[17] Burquez A,Martfnez-yrfzar A,Ncrez S,et al.Above-ground biomass in three Sonoran Desert communities variability within and among sites using replicated plot harvesting[J].Journal of Arid Environments,2010,74:1240-1247.
[18] Houghton R A,Hall F,Goetz S J.Importance of biomass in the global carbon cycle[J].Journal of Geophysical Research,2009,114:GOOE03.
[19] 王乐,赵丽清,陈育,等.西鄂尔多斯草原化荒漠植物群落多样性[J].干旱区研究,2015,32(2):258-265.
[20] 包萨如拉,赵利清,朴顺姬,等.西鄂尔多斯维管植物区系特征分析[J].中国沙漠,2012,32(2):428-436.
[21] 额尔敦格日乐.3S技术在西鄂尔多斯国家级自然保护区研究中的应用[D].呼和浩特:内蒙古师范大学,2007.
[22] 李博,史培军,李天杰,等.内蒙古鄂尔多斯高原自然资源与环境研究[M].北京:科学出版社,1990:90-93.
[23] 董鸣.陆地生物群落调查观测分析[M].北京:中国标准出版社,1997:152-153.
[24] 杭州大学化学系分析化学教研室编.分析化学手册:第二分册(化学分析)[M].北京:化学工业出版社,1982:935-941.
[25] 黄从德,张健,杨万勤,等.四川人工林生态系统碳储量特征[J].应用生态学报,2008,19(8):1644-1650.
[26] 程先富,史学正,于东升,等.兴国县森林土壤有机碳库及其环境因子的关系[J].地理研究,2004,23(2):211-217.
[27] Schulze E D,Freibauer A.Environmental science:carbon unlocked from soils[J].Nature,2005,437:205-206.
[28] Dawson J J,Smith P.Carbon losses from soil and its consequences for land-use management[J].Science of the Total Environment,2007,382:165-190.
[29] Guo L B,Wang M B,Gifford R M.The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation[J].Plant and Soil,2007,299:251-262.
[30] Hertel D,Harteveld M A,Leuschner C.Conversion of a tropical forest into agroforest alters the fine root-related carbon flux to the soil[J].Soil Biology and Biochemistry 2009,41:481-490.
[31] Huang G,Zhao X Y,Li Y Q,et al.Restoration of shrub communities elevates organic carbon in arid soils of northwestern China[J].Soil Biology and Biochemistry,2012,47:123-132.
[32] Li X R,Zhang P,Su Y G,Jia R L.Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China:a four-year field study[J].Catena,2012,97:119-126.
[33] Lufafa A,Diédhiou I,Samba S,et al.Carbon stocks and patterns in native shrub communities of Senegal's Peanut Basin[J].Geoderma,2008,146:75-82.
[34] 黄宇,冯宗炜,汪思龙,等.杉木、火力楠纯林及其混交林生态系统C、N贮量[J].生态学报,2005,25(12):3146-3154.
[35] Li Z,Zhao Q G.Organic carbon content and distribution in soils under different land uses in tropical and subtropical China[J].Plant and Soil,2001,231:175-185.
[36] Liu Y,Liu C,Wang S,et al.Organic carbon storage in four ecosystem types in the Karst region of sourthwestern China[J],Plos One,2013,8(2):e56443.
[37] Jobb gy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications,2000,10:423-436.
[38] 周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
[39] 郑绍伟,唐敏,邹俊辉,等.灌木群落及生物量研究综述[J].成都大学学报:自然科学版,2007,26(3):189-192.
[40] 卢振龙,龚孝生.灌木生物量测定的研究进展[J].林业调査规划,2009,34(4):37-41.
[41] 王天博,陆静.国外生物量模型概述[J].中国农学通报,2012,28(16):6-11.
[42] 陈文德,彭培好,王丽华,等.甘孜州植被生物量测算与评估[J].四川林勘设计,2009(2):18-23.
[43] Singh G,Singh K,Mishra D,et al.Vegetation diversity and role of Leptadenia Pyrotechnica in biomass contribution and carbon storage in arid zone of Inidia[J].Arid Ecosystems,2012,2(4):264-272.
[44] Bradley B A,Houghton R A,Mustard J F,et al.Invasive grass reduces aboveground carbon stocks in shrublands of the Western US[J].Global Change Biology,2006,12:1815-1822.
[45] Ruiz-Peinado R,Moreno G,Juarez E,et al.,The contribution of two common shrub species to aboveground and below-ground carbon stock in Iberian dehesas[J].Journal of Arid Environments,2013,91:22-30.
[46] Cerri C C,Volkoff B,Andreaux F.Nature and behaviour of organic matter in soils under natural forest,and after deforestation,burning and cultivation,near Manaus[J].Forest Ecology Management,1991,38:247-257.
[47] Ni J.Carbon storage in terrestrial ecosystems of China:estimates at different spatial resolutions and their responses to climate change[J].Climatic Change,2001,49:339-358.
[48] Brown S,Lugo A E.Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and US Virgin Islands[J].Plant and Soil,1990,124:53-64.
[49] Xu M,Cao C X,Tong Q X,et al.Remote sensing based shrub above-ground biomass and carbon storage mapping in Mu Us Desert,China[J].Technological Sciences,2010,53(Suppl I):176-183.
[50] 陶冶,张元明.中亚干旱荒漠区植被碳储量估算[J].干旱区地理,2013,36(4):615-622.
[51] 黄玫,季劲钧,曹明奎,等.中国区域植被地上与地下生物量模拟[J].生态学报,2006,26(12):4156-4163.
[52] Liu W H,Zhu J J,Jia Q Q,et al.Carbon sequestration effects of shrublands in Three-North Shelterbelt Forest region,China[J].Chinese Geographical Science,2014,24(44):444-453.
[53] 张林,王礼茂.三北防护林体系森林碳密度和碳储量动态[J].干旱区资源与环境,2010,24(8):136-140.
[54] 刘华,董玲,艾吉尔·阿不拉,等.塔里木河中游柽柳灌丛碳储量及其价值评估[J].江西农业大学学报,2015,37(3):484-489.
[1] 冯坤, 颜长珍, 谢家丽, 钱大文. 1975-2015年鄂尔多斯市沙漠化的时空演变过程[J]. 中国沙漠, 2018, 38(2): 233-242.
[2] 王娅, 周立华. 宁夏盐池县沙漠化逆转过程的脆弱性诊断[J]. 中国沙漠, 2018, 38(1): 39-47.
[3] 崔向慧, 卢琦, 郭浩. 荒漠生态系统长期观测标准体系研究与构建[J]. 中国沙漠, 2017, 37(6): 1121-1126.
[4] 陈宁, 王新平. 干旱区生态系统跃变:以输沙势为外部驱动力[J]. 中国沙漠, 2017, 37(1): 73-80.
[5] 党晓宏, 高永, 蒙仲举, 高君亮, 王珊, 包蕾, 余新春, 王祯仪, 王则宇. 西鄂尔多斯地区5种荒漠优势灌丛生物量分配格局及预测模型[J]. 中国沙漠, 2017, 37(1): 100-108.
[6] 尤南山, 蒙吉军. 基于生态敏感性和生态系统服务的黑河中游生态功能区划与生态系统管理[J]. 中国沙漠, 2017, 37(1): 186-197.
[7] 李鸿健, 任志远, 刘焱序, 张静. 西北河谷盆地生态系统服务的权衡与协同分析——以银川盆地为例[J]. 中国沙漠, 2016, 36(6): 1731-1738.
[8] 高亮, 高永, 王静, 罗凤敏, 吕新丰. 土地覆盖类型对科尔沁沙地南缘土壤有机碳储量的影响[J]. 中国沙漠, 2016, 36(5): 1357-1364.
[9] 曹生奎, 曹广超, 陈克龙, 冯起, 李忠勤, 张静, 汉光昭, 林阳阳. 青海湖高寒湿地生态系统CO2通量和水汽通量间的耦合关系[J]. 中国沙漠, 2016, 36(5): 1286-1295.
[10] 罗小庆, 赵景波. 鄂尔多斯高原清代风灾[J]. 中国沙漠, 2016, 36(3): 787-791.
[11] 刘文亭, 卫智军, 吕世杰, 孙世贤, 代景忠. 土地利用方式对荒漠草地生物量分配及碳密度的影响[J]. 中国沙漠, 2016, 36(3): 666-673.
[12] 杨洁, 刘冉, 马杰, 唐立松, 李彦. 古尔班通古特沙漠南缘梭梭(Haloxylon ammodendron)群落土壤呼吸对生态系统呼吸的贡献[J]. 中国沙漠, 2016, 36(3): 726-733.
[13] 赵敏敏, 周立华, 陈勇, 张吉树, 郭秀丽, 王睿. 生态政策驱动下的内蒙古自治区杭锦旗土地利用及生态系统服务价值变化[J]. 中国沙漠, 2016, 36(3): 842-850.
[14] 李新荣, 周海燕, 王新平, 刘立超, 张景光, 陈国雄, 张志山, 刘玉冰, 谭会娟, 高艳红. 中国干旱沙区的生态重建与恢复:沙坡头站60年重要研究进展综述[J]. 中国沙漠, 2016, 36(2): 247-264.
[15] 吕德燕, 常学礼, 岳喜元, 黄海涛. 中国东北主要生态系统气温变化趋势比较[J]. 中国沙漠, 2016, 36(1): 12-19.