Please wait a minute...
img

官方微信

高级检索
中国沙漠  2018, Vol. 38 Issue (2): 372-383    DOI: 10.7522/j.issn.1000-694X.2016.00170
天气与气候     
东亚沙尘源区晴空和云上沙尘气溶胶特征
茹建波1,2, 王天河1, 李积明1, 韩颖1, 张北斗1
1. 兰州大学 半干旱气候变化教育部重点实验室, 甘肃 兰州 730000;
2. 兰州市气象局, 甘肃 兰州 730020
Characteristics of Dust Aerosol in both Clear-sky and Above-cloud Conditions over East Asia
Ru Jianbo1,2, Wang Tianhe1, Li Jiming1, Han Ying1, Zhang Beidou1
1. Ministry of Education Key Laboratory for Semi-Arid Climate Change, Lanzhou University, Lanzhou 730000, China;
2. Lanzhou Meteorological Bureau, Lanzhou 730020, China
 全文: PDF(9392 KB)  
摘要: 利用2006年6月至2012年12月的CALIPSO Level 2 VFM产品、5 km分辨率的Aerosol Profile、Cloud Layer产品以及MISR反演的产品,揭示了东亚地区不同高度层上沙尘的时空分布特征,重点对比分析了东亚沙尘源区晴空和云上沙尘的垂直分布特征、消光系数和光学厚度。结果表明:塔克拉玛干沙漠和戈壁沙漠是东亚沙尘的主要源区,沙尘出现频率具有显著的季节差异,春季最多,夏秋相当,冬季最少,无论在晴空还是有云条件下,前者出现频率大于后者。对于同一地区而言,云上沙尘出现的最大高度较晴空沙尘更高。塔克拉玛干沙漠云上沙尘消光系数高值区集中在2~4 km,而戈壁沙漠则集中在3~5 km,但是在云层之上晴空和云上沙尘消光系数差别不大。塔克拉玛干沙漠以沙尘气溶胶为主,约占总气溶胶光学厚度的77%,晴空和云上沙尘光学厚度平均值分别为0.22和0.15;戈壁沙尘气溶胶约占总气溶胶光学厚度的52%,晴空和云上沙尘光学厚度的平均值分别为0.09和0.06。
关键词: 东亚地区沙尘气溶胶出现频率消光系数光学厚度    
Abstract: Based on CALIPSO Level 2 VFM, 5 km Aerosol Profile, 5 km Cloud Layer and MISR products from June 2006 to December 2012, we reveal the spatial and temporal distribution of dust aerosol in different height layers over East Asia. Especially, the vertical distribution, extinction coefficient and optical depth of dust aerosol are contrasted and analyzed in both clear-sky (CS) and above-cloud (AC) conditions over East Asia. The results show that the Taklimakan Desert (TD) and the Gobi Desert (GD) are the main dust source regions over East Asia. The distribution of dust occurrence frequency has significant seasonal difference, with the highest in spring, and the lowest in winter. Dust occurrence frequency over the TD is greater than that over the GD whenever in CS or AC conditions. For the same area, the maximum height of dust aerosol above cloud is higher than that of clear sky, and the high-value areas of dust extinction coefficient above cloud over the TD is at the height of 2-4 km, while that about 3-5 km over the GD. But the dust extinction coefficient above cloud has no significant difference between two conditions. The aerosol over the TD is dominated by dust aerosol, which accounts for 77% of the total aerosol optical depth (AOD). The average dust optical depths (DOD) are 0.22 and 0.15 in CS and AC conditions respectively. The dust aerosol over the GD accounts for 52% of the total AOD, and the average DOD is 0.09 and 0.06 in CS and AC conditions respectively. The results are the basis of further study on dust mass fluxes estimation in CS and AC conditions and even dust-cloud-climate interactions.
Key words: East Asia    dust aerosol    occurrence frequency    extinction coefficient    optical depth
收稿日期: 2016-12-08 出版日期: 2018-03-20
ZTFLH:  P407.2  
基金资助: 国家自然科学基金项目(41375031,41430425,41375021,41305027);兰州大学中央高校基本科研业务费专项资金项目(lzujbky-2017-67)
通讯作者: 王天河(E-mail:wangth@lzu.edu.cn)     E-mail: wangth@lzu.edu.cn
作者简介: 茹建波(1991-),男,甘肃临泽人,硕士研究生,主要从事沙尘气溶胶特性研究。E-mail:lzxnb111@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
茹建波
王天河
李积明
韩颖
张北斗

引用本文:

茹建波, 王天河, 李积明, 韩颖, 张北斗. 东亚沙尘源区晴空和云上沙尘气溶胶特征[J]. 中国沙漠, 2018, 38(2): 372-383.

Ru Jianbo, Wang Tianhe, Li Jiming, Han Ying, Zhang Beidou. Characteristics of Dust Aerosol in both Clear-sky and Above-cloud Conditions over East Asia. JOURNAL OF DESERT RESEARCH, 2018, 38(2): 372-383.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2016.00170        http://www.desert.ac.cn/CN/Y2018/V38/I2/372

[1] Charlson R J,Schwartz S E.Climate forcing by anthropogenic aerosols[J].Science,1992,255(5043):423.
[2] Kaufman Y J,Tanré D,Dubovik O,et al.Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing[J].Geophysical Research Letters,2001,28(8):1479-1482.
[3] Twomey S.The influence of pollution on the shortwave albedo of clouds[J].Journal of the atmospheric sciences,1977,34(7):1149-1152.
[4] Huang J,Lin B,Minnis P,et al.Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia[J].Geophysical Research Letters,2006,33(19):.
[5] Huang J,Minnis P,Yan H,et al.Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements[J].Atmospheric Chemistry and Physics,2010,10(14):6863-6872.
[6] Liu D,Wang Z,Liu Z,et al.A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements[J].Journal of Geophysical Research:Atmospheres,2008,113(D16).
[7] Uno I,Eguchi K,Yumimoto K,et al.Asian dust transported one full circuit around the globe[J].Nature Geoscience,2009,2(8):557-560.
[8] Li C,Krotkov N A,Dickerson R R,et al.Transport and evolution of a pollution plume from northern China:a satellite-based case study[J].Journal of Geophysical Research:Atmospheres,2010,115(D7).
[9] Huang J,Wang T,Wang W,et al.Climate effects of dust aerosols over East Asian arid and semiarid regions[J].Journal of Geophysical Research:Atmospheres,2014,119(19).
[10] Intergovernmental Panel on Climate Change.Climate Change 2007:The Physical Science Basis[M].New York,USA:Cambridge University Press,2007.
[11] Intergovernmental Panel on Climate Change.Climate Change 2013:The Physical Science Basis[M].New York,USA:Cambridge University Press,2013.
[12] Wang S,Wang J,Zhou Z,et al.Regional characteristics of dust events in China[J].Journal of Geographical Sciences,2003,13(1):35-44.
[13] Han Y,Fang X,Zhao T,et al.Long range trans-Pacific transport and deposition of Asian dust aerosols[J].Journal of Environmental Sciences,2008,20:424-428.
[14] Qi Y L,Ge J M,Huang J P.Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET[J].Chinese Science Bulletin,2013,58(20):2497-2506.
[15] 宿兴涛,李鲲,魏强,等.东亚沙尘光学特性及其对辐射强迫和温度的影响[J].中国沙漠,2016,36(5):1381-1390.
[16] Huang Z,Huang J,Bi J,et al.Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-US joint dust field experiment[J].Journal of Geophysical Research:Atmospheres,2010,115(D7).
[17] 宋嘉尧,张京朋,曲宗希,等.微脉冲激光雷达反演半干旱区气溶胶消光系数方法[J].中国沙漠,2015,35(4):971-976.
[18] Huang J,Fu Q,Su J,et al.Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J].Atmospheric Chemistry and Physics,2009,9(12):4011-4021.
[19] Yu H,Zhang Y,Chin M,et al.An integrated analysis of aerosol above clouds from A-Train multi-sensor measurements[J].Remote Sensing of Environment,2012,121:125-131.
[20] Yu H,Chin M,Bian H,et al.Quantification of trans-Atlantic dust transport from seven-year (2007-2013) record of CALIPSO lidar measurements[J].Remote Sensing of Environment,2015,159:232-249.
[21] Diner D J,Martonchik J V,Kahn R A,et al.Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land[J].Remote Sensing of Environment,2005,94(2):155-171.
[22] 柳晶.中国地区气溶胶光学特性及辐射强迫的卫星遥感观测研究[D].南京:南京信息工程大学,2008.
[23] Omar A H,Winker D M,Tackett J L,et al.CALIOP and AERONET aerosol optical depth comparisons:One size fits none[J].Journal of Geophysical Research:Atmospheres,2013,118(10).
[24] Hayasaka T,Satake S,Shimizu A,et al.Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds East Asia Regional Experiment 2005[J].Journal of Geophysical Research:Atmospheres,2007,112(D22).
[25] Omar A H,Winker D M,Vaughan M A,et al.The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J].Journal of Atmospheric and Oceanic Technology,2009,26(10):1994-2014.
[26] Takamura T,Sasano Y,Hayasaka T.Tropospheric aerosol optical properties derived from lidar,sun photometer,and optical particle counter measurements[J].Applied Optics,1994,33(30):7132-7140.
[27] Anderson T L,Masonis S J,Covert D S,et al.In situ measurement of the aerosol extinction-to-backscatter ratio at a polluted continental site[J].Journal of Geophysical Research,2000,105(22):26907-26915.
[28] Liu Z,Sugimoto N,Murayama T.Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar[J].Applied Optics,2002,41(15):2760-2767.
[29] Anderson T L,Masonis S J,Covert D S,et al.Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia[J].Journal of Geophysical Research:Atmospheres,2003,108(D23).
[30] Chen W N,Tsai F J,Chou C C K,et al.Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei,Taiwan[J].Atmospheric Environment,2007,41(36):7698-7714.
[31] Omar A,Liu Z,Vaughan M,et al.Extinction-to-backscatter ratios of Saharan dust layers derived from in situ measurements and CALIPSO overflights during NAMMA[J].Journal of Geophysical Research:Atmospheres,2010,115(D24).
[32] Tsunematsu N,Kai K,Matsumoto T.The influence of synoptic-scale air flow and local circulation on the dust layer height in the north of the Taklimakan Desert[J].Water,Air & Soil Pollution:Focus,2005,5(3/4/5/6):175-193.
[33] Liu Z,Fairlie T D,Uno I,et al.Transpacific transport and evolution of the optical properties of Asian dust[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2013,116:24-33.
[34] Huang J,Minnis P,Chen B,et al.Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J].Journal of Geophysical Research:Atmospheres,2008,113(D23).
[35] Liu Z,Kuehn R,Vaughan M,et al.The CALIPSO cloud and aerosol discrimination:Version 3 algorithm and test results[C]//25th International Laser Radar Conference.St.Petersburg,Russia:International Association of Meteorology and Atmospheric Physics,2010.
[36] Winker D M,Pelon J,McCormick M P.Initial Results from CALIPSO[R].2006.
[37] Winker D M,Tackett J L,Getzewich B J,et al.The global 3-D distribution of tropospheric aerosols as characterized by CALIOP[J].Atmospheric Chemistry and Physics,2013,13(6):3345-3361.
[38] Sun J,Zhang M,Liu T.Spatial and temporal characteristics of dust storms in China and its surrounding regions,1960-1999:relations to source area and climate[J].Journal of Geophysical Research:Atmospheres,2001,106(D10).
[1] 彭艳梅, 王舒, 肖高翔, 高磊, 何清, 刘新春. 塔克拉玛干沙漠腹地塔中地区大气气溶胶散射系数影响因子[J]. 中国沙漠, 2018, 38(2): 384-392.
[2] 盛阳, 杨胜利, 韩永翔, 郑秋凤, 方小敏. 格尔木地区沙尘气溶胶硝酸盐含量及来源[J]. 中国沙漠, 2016, 36(3): 792-797.
[3] 宋嘉尧, 张京朋, 曲宗希, 张文煜. 微脉冲激光雷达反演半干旱区气溶胶消光系数方法[J]. 中国沙漠, 2015, 35(4): 971-976.
[4] 柳丹, 张武, 陈艳, 颜娇珑. 基于卫星遥感的中国西北地区沙尘天气发生机理及传输路径分析[J]. 中国沙漠, 2014, 34(6): 1605-1616.
[5] 徐成鹏, 葛觐铭, 黄建平, 付强, 刘华悦, 陈斌. 基于CALIPSO星载激光雷达的中国沙尘气溶胶观测[J]. 中国沙漠, 2014, 34(5): 1353-1362.
[6] 杜川利, 李星敏, 陈闯, 王繁强, 彭艳, 董妍, 董自鹏. 陕西省榆林市秋冬季黑碳观测研究[J]. 中国沙漠, 2014, 34(3): 869-877.
[7] 刘新春, 钟玉婷, 何清, 杨兴华, 艾力·买买提明. 塔克拉玛干沙漠腹地沙尘气溶胶质量浓度垂直分布特征[J]. 中国沙漠, 2012, 32(4): 1045-1052.
[8] 顾润源, 武荣盛, 周伟灿, 王欣. 内蒙古半干旱草原沙尘天气对近地层微气象学特征影响分析[J]. 中国沙漠, 2012, 32(3): 815-823.
[9] 刘新春;钟玉婷;何 清;艾力·买买提明;杨兴华;. 塔克拉玛干沙漠腹地及周边地区PM10时空变化特征及影响因素分析[J]. 中国沙漠, 2011, 31(2): 323-330.
[10] 郝 丽;杨 文;吴统文;赵剑琦;石广玉. 沙尘气溶胶的光学特性及辐射强迫效应[J]. 中国沙漠, 2010, 30(6): 1477-1482.
[11] 申莉莉;盛立芳*;陈静静. 一次强沙尘暴过程中沙尘气溶胶空间分布的初步分析[J]. 中国沙漠, 2010, 30(6): 1483-1490.
[12] 黄 艇;宋 煜;胡文东;*;郭本军. 大连地区一次沙尘过程的激光雷达观测研究[J]. 中国沙漠, 2010, 30(4): 983-988.
[13] 许潇锋;牛生杰;邱金桓;达布希拉图. 兰州1960—2003年大气气溶胶光学厚度和太阳辐射变化特征[J]. 中国沙漠, 2009, 29(5): 966-970.
[14] 高卫东;;袁玉江;刘志辉;魏文寿. 新疆沙尘源状况及其沙尘气溶胶释放条件分析[J]. 中国沙漠, 2008, 28(5): 968-973.
[15] 陈 霞;魏文寿;刘明哲. 塔里木盆地沙尘气溶胶对短波辐射的影响——以塔中为例[J]. 中国沙漠, 2008, 28(5): 920-926.