Please wait a minute...
img

官方微信

高级检索
中国沙漠  2018, Vol. 38 Issue (2): 384-392    DOI: 10.7522/j.issn.1000-694X.2017.00004
天气与气候     
塔克拉玛干沙漠腹地塔中地区大气气溶胶散射系数影响因子
彭艳梅1, 王舒1, 肖高翔1, 高磊1, 何清2, 刘新春2
1. 新疆维吾尔自治区气象服务中心, 新疆 乌鲁木齐 830002;
2. 中国气象局乌鲁木齐沙漠气象研究所 新疆树木年轮生态实验室/中国气象局树木年轮理化研究重点开放实验室/塔克拉玛干沙漠大气环境观测试验站, 新疆 乌鲁木齐 830002
Impact Factors of Atmospheric Aerosol Scattering Coefficient in the Tazhong Area of the Taklimakan Desert
Peng Yanmei1, Wang Shu1, Xiao Gaoxiang1, Gao Lei1, He Qing2, Liu Xinchun2
1. Xinjiang Meteorological Service Center, Urumqi 830002, China;
2. Xinjiang Laboratory of Tree Ring Ecology/Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration/Taklimakan Station of Desert Atmosphere and Environment Observation and Experiment, Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China
 全文: PDF(3774 KB)  
摘要: 利用2010年塔克拉玛干沙漠腹地塔克拉玛干沙漠大气环境观测试验站单波段(525 nm)积分浊度计和PM10自动监测仪、能见度仪器观测资料,结合塔中地面气象观测资料,分析影响塔中气溶胶散射系数的各因子。结果表明:(1)散射系数和PM10质量浓度具有明显的正相关关系,相关程度秋季最大,达0.96;夏季次之,为0.94;冬季最小,为0.91。(2)质量散射系数3月最小,10月最大;四季中,春季最小,为0.60 m2·g-1,秋季最大,为1.38 m2·g-1。塔中站气溶胶质量散射系数小于河北张北站、甘肃民勤站、兰州西固区,大于内蒙古锡林浩特站、希腊克里特岛、以色列内盖夫沙漠。(3)能见度与散射系数呈显著负幂相关关系,相关系数为0.80,其中夏、秋、冬季的相关系数都超过了年相关系数,分别是0.913、0.908、和0.857,春季最低为0.723。(4)风速较大时,散射系数的值也比较大,两者呈现正相关关系,相关系数为0.45。散射系数小于500 Mm-1时,主要分布于ENE和NE;大于500 Mm-1以上则主要是在ENE、NE、E风向。在ESE风向时,散射系数的平均值最大,其次是SSE方向上,最小值是S风向。
关键词: 散射系数沙尘气溶胶影响因子塔克拉玛干沙漠    
Abstract: The observation data from conventional observation instruments and single-band(525 nm)integral nephelometer, PM10 automatic monitor and visibility instrument of the Taklimakan Desert Atmosphere Observation Station in 2010 were used to analyze the relationship between the aerosol scattering coefficient and various factors in the Tazhong. The results showed that:(1) Scattering coefficient and mass concentration of PM10 had a significant positive correlation, and the correlation coefficient was 0.96 in autumn, 0.94 in summer, and 0.91 in winter.(2)For mass scattering coefficient, the lowest value was in March, the highest value was in October; the lowest value was 0.66 m2·g-1 in spring, the highest value was 1.386 m2·g-1 in fall. The mass scattering coefficient of Tazhong station was smaller than that of Zhangbei Station of Hebei Province, Minqin Station of Gansu Province, Xigu District of Lanzhou, Xilinhaote Station of Inner Mongolia, Crete Island of Greece and Negev Desert of Israel. (3) There were a significantly negative correlation between visibility and scattering coefficient, and the coefficient was 0.80. The correlation coefficient in summer, autumn and winter exceeded that in whole year. With correlation coefficients 0.913, 0.908, and 0.857,respectively, and the lowest value was in spring (0.723). (4)When the wind speed was large, the scattering coefficient values were relatively large, and the correlation coefficient was 0.45. When the scattering coefficient was less than 500 Mm-1, the wind direction was distributed in ENE and NE; when the scattering coefficient was more than 500 Mm-1, the wind direction was mainly distributed in ENE, NE and E. In the ESE wind direction, the average of the scattering coefficient was the largest, followed by the SSE direction, and the minimum value was the S wind direction.
Key words: scattering coefficient    dust aerosols    impact factor    Taklimakan Desert
收稿日期: 2016-12-21 出版日期: 2018-03-20
ZTFLH:  P407.2  
基金资助: 新疆维吾尔自治区自然科学基金项目(2016D01A078)
作者简介: 彭艳梅(1987-),女,重庆人,工程师,主要从事气象服务工作。E-mail:pengyanmei00@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
彭艳梅
王舒
肖高翔
高磊
何清
刘新春

引用本文:

彭艳梅, 王舒, 肖高翔, 高磊, 何清, 刘新春. 塔克拉玛干沙漠腹地塔中地区大气气溶胶散射系数影响因子[J]. 中国沙漠, 2018, 38(2): 384-392.

Peng Yanmei, Wang Shu, Xiao Gaoxiang, Gao Lei, He Qing, Liu Xinchun. Impact Factors of Atmospheric Aerosol Scattering Coefficient in the Tazhong Area of the Taklimakan Desert. JOURNAL OF DESERT RESEARCH, 2018, 38(2): 384-392.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2017.00004        http://www.desert.ac.cn/CN/Y2018/V38/I2/384

[1] 刘晓云,岳平.敦煌地区2001年春季气溶胶光学厚度反演[J].干旱区研究,2007,24(6):790-795.
[2] Harrison S P,Kohfeld K E,Roelandt C,et al.The role of dust in climate changes today at the last glacial maximum and in the future[J].Earth-Science Reviews,2001,54:43-80.
[3] Zhang X Y,Arimoto R,An Z S.Dust emission from Chinese desert sources linked to variation in atmospheric circulation[J].Journal Geophysical Research Atmosphere,1997,102(D23):28.
[4] 宿兴涛,李鲲,魏强,等.东亚沙尘光学特性及其对辐射强迫和温度的影响[J].中国沙漠2016,36(5):1381-1390.
[5] 杨帆,王顺胜,何清,等.塔克拉玛干沙漠腹地地表辐射与能量平衡[J].中国沙漠2016,36(5):1408-1418.
[6] Tegen I,Laciss A A,Fung I.The influence on climate forcing of mineral aerosols from disturbed soils[J].Nature,1996,380:419-422.
[7] Sokolik I N,Toon O B.Direct radiative forcing by anthropogenic airborne mineral aerosols[J].Nature,1996,381:681-683.
[8] Beuttell R G,Brewer A W.Instruments for the measurement of the visual range[J].Journal of Scientific Instruments,1943,26:357-359.
[9] Middleton W E K.Vision through the atmosphere[J].Physics Today,1954,7(3):21.
[10] Ahlquist N C,Charlson R J.A new instrument for evaluating the visual quality of air[J].Journal of the Air Pollution Control Association,1967,17(7):457-469.
[11] Charlson R J.Integrating nephelometer[J].Atmospheric Technology,1980,12:10-l4.
[12] Bodhaine B A.Aerosol absorption measurements at Barrow Mauna Loa and the south pole[J].Geophysical Research,1995,100(D5):8967-8975.
[13] Carrico C M,Rood M J,Ogren J A.Aerosol light scattering properties at Cape Grim,Ta smania,during the first aerosol characterization experiment(ACEI)[J].Journal of Geophysical Research,1998,103(D13):16565-16574.
[14] Anderson T L,Masonis S J,Covert D S,et a1.Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia[J].Journal of Geophysical Research,2003,108(D23):8647.
[15] Xu J,Bergin M H,Yu X,et al.Measurement of aerosol chemical,physical and radiative properties in the Yangtze delta region of China[J].Atmospheric Environment,2002,36:161-173.
[16] White W H,Macias E S,Nininger R C,et al.Size-resolved measearements of light scattering by ambient particles in the Southwestern U.S.A[J].Atmospheric Environment,1994,28:909-922.
[17] Chow J C,Watson J G,Lowenthal D H,et al.Comparability between PM2.5 and particle light scattering measurements[J].Environmental Monitoring and Assessment,2002,79:29-45.
[18] Bergin M H,Cass G R,Xu J,et al.Aerosol radiative,physical,and chemical properties in Beijing during June 1999[J].Geophysical Research,2001,106(D16):17969-17980.
[19] 胡波,张武,张镭,等.兰州市西固区冬季大气气溶胶粒子的散射特征[J].高原气象,2003,22(4):354-361.
[20] 柯宗建,汤洁,王炳忠,等.积分浊度计在沙尘暴监测网试验中应用分析[J].气象科技,2004,32(4):258-263.
[21] 杨莲梅,张广兴,魏文寿,等.粒子散射系数在沙尘天气观测分级中的初步分析[J].中国沙漠,2006,26(3):380-383.
[22] 章秋英,牛生杰,沈建国,等.半干旱区气溶胶散射特性研究[J].中国沙漠,2008,28(4):755-762.
[23] 孟昭阳,蒋晓明,颜鹏,等.太原冬季大气气溶胶的散射特征[J].气候变化研究进展,2007,3(5):255-260.
[24] 古金霞,白志鹏,解以扬,等.天津市冬季颗粒物散射消光特征[J].南开大学学报:自然科学版,2009,42(2):73-78.
[25] 陈霞,魏文寿,刘明哲,等.塔里木盆地沙尘气溶胶对短波辐射的影响——以塔中为例[J].中国沙漠,2008,28(5):920-926.
[26] 延昊,矫燕梅,毕宝贵,等.塔克拉玛干沙漠中心的沙尘气溶胶观测研究[J].中国沙漠,2006,26(3):389-394.
[27] 延昊,矫燕梅,赵琳娜,等.中国北方气溶胶散射和PM10浓度特征[J].高原气象,2008,27(4):852-859.
[28] 陆辉,魏文寿,刘明哲,等.塔克拉玛干沙漠腹地大气气溶胶散射特征研究[J].中国沙漠,2010,30(3):660-668.
[29] Vrekoussis M,Liakakou E,Koccak M.Seasonal variability of optical properties ofaerosols in the eastern Mediterranean[J].Atmospheric Environment,2005,39:7083-7094.
[30] Andreae T W,Andreae MO,Ichoku C,et a1.Light scattering by dust and anthropogenic aerosol at a remote site in the Negev Desert,Israel[J].Geophysics Research,2002,107:D900252.
[31] 姚青,韩素芹,蔡子颖,等.天津城区春季大气气溶胶消光特性研究[J].中国环境科学,2012,32(5):795-802.
[32] 刘新春,钟玉婷,何清,等.塔克拉玛干沙漠腹地及周边地区PM10时空变化特征及影响因素分析[J].中国沙漠,2011,31(2):323-331.
[1] 李爱敏, 韩致文, 钟 帅, 郭彩赟. 基于CASS和ArcGIS的新月形沙丘属性参数提取[J]. 中国沙漠, 2018, 38(3): 484-491.
[2] 茹建波, 王天河, 李积明, 韩颖, 张北斗. 东亚沙尘源区晴空和云上沙尘气溶胶特征[J]. 中国沙漠, 2018, 38(2): 372-383.
[3] 廖小荷, 何清, 金莉莉, 杨兴华, 买买提艾力·买买提依明, 霍文, 杨帆. 塔克拉玛干沙漠腹地冬季积雪下垫面地表反照率及土壤温湿度变化特征[J]. 中国沙漠, 2018, 38(2): 393-400.
[4] 金莉莉, 李振杰, 何清, 霍文, 杨帆, 杨兴华. 塔克拉玛干沙漠腹地人工绿地中心区域与边缘地带小气候[J]. 中国沙漠, 2017, 37(5): 986-996.
[5] 杨怀德, 冯起, 郭小燕. 1999-2013年民勤绿洲地下水埋深年际变化动态及影响因素[J]. 中国沙漠, 2017, 37(3): 562-570.
[6] 周成龙, 杨兴华, 霍文, 钟昕洁, 杨帆, 何清. 塔克拉玛干沙漠腹地降水特征[J]. 中国沙漠, 2017, 37(2): 343-348.
[7] 郭彩贇, 韩致文, 李爱敏. 塔克拉玛干沙漠地区沙尘暴研究进展[J]. 中国沙漠, 2016, 36(6): 1646-1652.
[8] 张文斌, 买买提艾力·买买提依明, 何清, 霍文, 杨兴华, 杨帆. 塔克拉玛干沙漠腹地土壤热通量变化特征[J]. 中国沙漠, 2016, 36(6): 1666-1671.
[9] 杨帆, 王顺胜, 何清, 霍文, 杨兴华, 郑新倩, 王毅, 蔡文军, 买买提艾力·买买提依明. 塔克拉玛干沙漠腹地地表辐射与能量平衡[J]. 中国沙漠, 2016, 36(5): 1408-1418.
[10] 代亚亚, 何清, 陆辉, 杨兴华, 周长帅. 塔克拉玛干沙漠腹地复合型纵向沙垄区近地层沙尘水平通量及粒度特征[J]. 中国沙漠, 2016, 36(4): 918-924.
[11] 魏亚平, 范敬龙, 徐新文, 金小军, 周宏伟. 塔克拉玛干沙漠南部地下水化学演化模拟[J]. 中国沙漠, 2016, 36(3): 798-804.
[12] 盛阳, 杨胜利, 韩永翔, 郑秋凤, 方小敏. 格尔木地区沙尘气溶胶硝酸盐含量及来源[J]. 中国沙漠, 2016, 36(3): 792-797.
[13] 买买提艾力·买买提依明, 李振杰, 金莉莉, 缪启龙, 何清. 塔克拉玛干沙漠湍流尺度[J]. 中国沙漠, 2015, 35(4): 983-993.
[14] 杨帆, 买买提艾力·买买提依明, 杨兴华, 何清, 郑新倩. 新疆肖塘冬季土壤呼吸特征及影响因素[J]. 中国沙漠, 2015, 35(1): 195-202.
[15] 柳丹, 张武, 陈艳, 颜娇珑. 基于卫星遥感的中国西北地区沙尘天气发生机理及传输路径分析[J]. 中国沙漠, 2014, 34(6): 1605-1616.