Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2014, Vol. 34 Issue (3): 765-772    DOI: 10.7522/j.issn.1000-694X.2013.00377
    
Monitoring the Spatial Variability of Soil Salinity and Composite in Dry and Wet Seasons in North Tarim Basin monitored with Electromagnetic Induction Instruments
Yao Yuan, Ding Jianli, Zhang Fang, Jiang Hongnan, Lei Lei
College of Resource and Environmental Science/Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi 830046, China
Download:  PDF (3004KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Soil salinization is one of the eco-environmental geological problems, which affect the oasis agricultural production and inhibit crop growth. Integrated near sensing technology based on electromagnetic induction instruments and ground sampling techniques is an advanced method for monitoring and forecasting soil salinization. In this contribution, electromagnetic induction EM38 and the soil conductivity data in horizontal mode (EMH) and vertical mode (EMV) and field observation data are used to evaluate soil salinity at the delta oasis between the Weigan River and the Kuqa River in the north rim of the Tarim Basin. Spatio-temporal variation of soil salinity and composite in response to dry and wet seasons is analyzed by using Universal Kriging. Our results show that EMV is significantly correlated with EMH in study area in wet and dry seasons, and the best multiple regression model was EMV+EMH as independent variable in the three models, all achieved 1% significance level. The top layer soil salt content data, which used EM38 to interpreted in accordance with P-P normal distribution in study area in dry and wet seasons, and shows strong spatial autocorrelation. Considering the scale dependency of spatial variation, the nested spherical models are fitted for semi-variance of top soil. Spatio-temporal distribution maps of soil salinity and its main component ions, include Na+ and Cl- for top soil layers were also mapped. And the trend is consistent. So we can monitor spatial variability of soil salinity and its composition in dry and wet seasons using electromagnetic induction instruments.
Key words:  electromagnetic induction      spatial variability      soil salinization      dry season      wet season      the delta oasis of Weigan-Kuqa watershed     
Received:  19 February 2013      Published:  20 May 2014
ZTFLH:  S156.4  
  S159.3  
Corresponding Authors:  丁建丽(Email:watarid@xju.edu.cn)     E-mail:  watarid@xju.edu.cn

Cite this article: 

Yao Yuan, Ding Jianli, Zhang Fang, Jiang Hongnan, Lei Lei. Monitoring the Spatial Variability of Soil Salinity and Composite in Dry and Wet Seasons in North Tarim Basin monitored with Electromagnetic Induction Instruments. JOURNAL OF DESERT RESEARCH, 2014, 34(3): 765-772.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00377     OR     http://www.desert.ac.cn/EN/Y2014/V34/I3/765

[1] 乔木,周生斌,卢磊,等.新疆渭干河流域土壤盐渍化时空变化及成因分析[J].地理科学进展,2012,31(7):904-910.
[2] 王玉刚,肖笃宁,李彦,等.干旱内流区尾闾绿洲土壤积盐的动态特征[J].中国沙漠,2009,29(4):604-610.
[3] 李建国,濮励杰,朱明,等.土壤盐渍化研究现状及未来研究热点[J].地理学报,2012,67(9):1233-1245.
[4] 吴亚坤,杨劲松,李晓明,等.基于光谱指数与EM38的土壤盐分空间变异性研究[J].光谱学与光谱分析,2009,29(4):1023-1027.
[5] Su Y Z,Zhao W Z,Su P X,et al.Ecological effects of desertification control and desertified land reclamation in an oasis-desert ecotone in an arid region:A case study in Hexi Corridor,northwest China[J].Ecological Engineering,2007,29:117-124.
[6] 刘新华,徐海量,凌红波,等.塔里木河下游典型绿洲滴管防护林地土壤水盐时空动态[J].中国沙漠,2012,32(6):1604-1610.
[7] 雷磊,塔西甫拉提·特依拜,丁建丽,等.基于HJ-1A高光谱影像的盐渍化土壤信息提取[J].中国沙漠,2013,33(4):1104-1109.
[8] 谢幕斯叶·艾尼瓦尔,塔西甫拉提·特依拜,王宏卫,等.人工智能计算技术在新疆干旱区典型绿洲土壤盐分预测中的应用[J].中国沙漠,2014,34(1):153-161.
[9] 张飞,塔西甫拉提·特依拜,丁建丽,等.塔里木河中游典型绿洲土壤的发射光谱特征[J].地理科学进展,2012,31(7):921-932.
[10] 韩桂红,塔西甫拉提·特依拜,买买提·沙吾提,等.基于典范对应分析的干旱区春季盐渍化特征研究[J].土壤学报,2012,49(4):681-687.
[11] 赵振亮,塔西甫拉提·特依拜,丁建丽,等.新疆典型绿洲土壤电导率和PH值的光谱响应特征[J].中国沙漠,2013,33(5):1413-1419.
[12] 吴亚坤,杨劲松,杨晓英,等.基于EM38的封丘县土壤盐渍化调查研究[J].干旱地区农业研究,2008,26(5):129-133.
[13] 李洪义,史周,程街亮,等.基于EM38的土壤剖面电导率预测研究[J].中国农业科学,2008,41(1):295-302.
[14] 李晓明,杨劲松,李冬顺.基于电磁感应(EM38)典型半干旱区土壤盐分空间变异研究[J].土壤通报,2010,41(3):695-699.
[15] 张同娟,杨劲松,刘广明.基于电磁感应仪的河口地区底聚型盐分剖面特征的解译[J].农业工程学报,2009,25(11):109-113.
[16] 吴亚坤,杨劲松,刘广明.基于遥感与电磁感应数据的土壤盐分空间变异性[J].农业工程学报,2009,25(7):148-152
[17] 杨劲松,姚荣江,刘广明,等.电磁感应仪用于土壤盐分空间变异性的指示克立格分析评价[J].土壤学报,2008,45(4):585-593.
[18] 张同娟,杨劲松,刘广明.基于EM38长江河口地区土壤盐渍化特征研究[J].水土保持学报,2009,23(6):210- 214
[19] 李晓明,杨劲松,刘梅先,等.基于电磁感应的典型干旱区土壤盐分空间异质性[J].农业工程学报,2010,26(12):97-101.
[20] 伍漫春,丁建丽,王高峰.基于地表温度-植被指数特征空间的区域土壤水分反演[J].中国沙漠,2012,32(1):148-154.
[21] 张飞,塔西甫拉提·特依拜,丁建丽,等.塔里木盆地北缘绿洲土地利用与生态系统服务价值的时空变化研究[J].中国沙漠,2009,29(5):933-941.
[22] Lesch S M,Corwin D L,Robinson D A.Apparent soil electrical conductivity mapping as an agricultural management tool in arid zone soils[J].Computers and Electronics in Agriculture,2005,46(1/3):351-378.
[23] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
[24] 王世称,陈泳良,夏立显,等.综合信息矿产预测理论与方法[M].北京:科学出版社,2002.
[25] 杨劲松,姚荣江.基于磁感式土壤表观电导率空间变异性的插值方法比较[J].农业工程学报,2007,23(9):50- 57.
[26] 吴亚坤.基于遥感与EM38的区域土壤盐渍化评估研究[D].南京:中国科学院土壤研究所,2008.
[27] 姚荣江,杨劲松,姜龙,等.基于聚类分析的土壤盐渍剖面特征及其空间分布研究[J].土壤学报,2008,45(1):56-65.
[28] 姚荣江,杨劲松,邹平,等.基于电磁感应仪的田间土壤盐渍度及其空间分布定量研究[J].中国农业科学,2008,41(2):460-469.
No Suggested Reading articles found!