Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2015, Vol. 35 Issue (1): 120-128    DOI: 10.7522/j.issn.1000-694X.2014.00170
    
Vegetation Pattern and Spatial Distribution of NDVI in the Yarlung Zangbo River Basin of China
Chen Bin1,2, Li Haidong1, Cao Xuezhang1, Shen Weishou1, Jin Hang1,2
1. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China; ;
2. School of Remote Sensing, Nanjing University of Information Science & Technology, Nanjing 210044, China
Download:  PDF (2061KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The range of elevation is over 7 000 meters a.s.l. in the Yarlung Zangbo River Basin, where climate conditions are very complex and types of ecosystem are diverse, the spatial pattern of vegetation distribution changes greatly. Based on 1:1 000 000 vegetation map, SPOT_VEGETATION NDVI data sets and digital elevation model (DEM), the dominant vegetation types and theirs spatial distribution in the basin were extracted and analyzed quantitatively with the help of Geographical Information System (GIS). Thereafter, combined with the elevation gradients and climate conditions in different wide valley sections of the basin, we discussed therelationship between vegetation pattern and spatialdistribution of NDVI. (1) There are 11 vegetation type groups (including coniferous forest, broad-leaved forest, bush, desert, grassland, meadow, alpine vegetation, etc.) and 25 vegetation types in the basin. The numbers of vegetation types in the Milin wide valley are the most, while the diversity of vegetation types among Shannan wide valley, Shigatse wide valley and Maquanhe wide valley showed a decrease trend totally from downstream to upstream. (2) The numbers of vegetation type groups and vegetation types both increase at first, and then decreased with the increase of altitude, of which, 3000-4 000 m and 4 000-5 000 m are the most, the vertical zonality of vegetation pattern in the basin is remarkable. (3) The spatial consistency between vegetation pattern and NDVI change isgood in the basin. The greatest NDVI value of coniferous forest, broad-leaved forest and grass vegetation are all in October-December, while the greatest and the least NDVI value of the other 8 vegetation type groups were all in July-September and January-March, respectively. The altitude of 3 000 m is a turning point at which vegetation pattern on the basin scale ofthe Yarlung Zangbo River change significantly.

Key words:  vegetation types      NDVI      spatial distribution      GIS      Qinghai-Tibet Plateau     
Received:  23 October 2014      Published:  20 January 2015
ZTFLH:  Q948  

Cite this article: 

Chen Bin, Li Haidong, Cao Xuezhang, Shen Weishou, Jin Hang. Vegetation Pattern and Spatial Distribution of NDVI in the Yarlung Zangbo River Basin of China. JOURNAL OF DESERT RESEARCH, 2015, 35(1): 120-128.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2014.00170     OR     http://www.desert.ac.cn/EN/Y2015/V35/I1/120

[1] Antoine G,Niklaus E Z.Predictive habitat distribution models in ecology[J].Ecological Modelling,2000,135:147-186.
[2] Glenn M,Robert E,Brian H,et al.Vegetation variation across Cape Cod,Massachusetts:environmental and historical determinants[J].Journal of Biogeography,2002,29:1439-1454.
[3] Li H D,Shen W S,Zou C X,et al.Spatio-temporal variability of soil moisture and its effect on vegetation in a desertifiedaeolian riparian ecotone on the Tibetan Plateau,China[J].Journal of Hydrology,2013,479:215-225.
[4] 李海东,沈渭寿,方颖,等.雅鲁藏布江中游河岸带几种主要沙生植物种群点格局分析[J].植物生态学报,2011,35(8):834-843.
[5] 王兆印,巩同梁,施文婧.雅鲁藏布植被类型及与侵蚀类型的关系[J].地球科学进展,2011,26(11):1208-1216.
[6] Ma K M,Zu Y G.Fractal properties of vegetation pattern[J].Acta Phytoecologica Sinica,2000,24(1):111-117.
[7] 李旭,谢永宏,黄继山,等.湿地植被格局成因研究进展[J].湿地科学,2009,(3):280-288.
[8] 范瑛,李小雁,李广泳.基于MODIS/EVI的内蒙古高原西部植被变化[J].中国沙漠,2014,34(6):1671-1677.
[9] Salisbury E J.The geographical distribution of breeding plants in relation to climatic factors[J].Geographical Journal,1926,57:312-35.
[10] Box E O.Plant functional types and climate at the global scale[J].Journal of Vegetation Science,1996,7(3):309-320.
[11] 李崇巍,刘丽娟,孙鹏森,等.岷江上游植被格局与环境关系的研究[J].北京师范大学学报(自然科学版),2005,41(4):404-409.
[12] He M Z,Zheng J G,Li X R,et al. Environmental factors affecting vegetation composition in the Alxa Plateau,China[J].Journal of Arid Environments,2007,69:473-489.
[13] 沈泽昊.山地森林样带植被环境关系的多尺度研究[J].生态学报,2002,22(4):461-47
[14] 张文江,高志强.青藏高原中东部水热条件与NDVI的空间分布格局[J].地理研究,2006,25(5):77-86.
[15] 韩砚君,牛建明,张庆,等.锡林河流域近30年草原植被格局动态及驱动力分析[J].中国草地学报,2014,36(2):70-77.
[16] 刘桂林,艾里西尔·库尔班,玉米提·哈力克,等.基于变化轨迹探测的植被景观格局动态分析——以塔里木河下游生态输水区域为例[J].中国沙漠,2012,32(5):1472-1476..
[17] 拉琼,扎西次仁,朱卫东,等.雅鲁藏布江河岸植物物种丰富度分布格局及其环境解释[J].生物多样性,2014,(3):337-347.
[18] 韦振锋,王德光,张翀,等.1999-2010年中国西北地区植被覆盖对气候变化和人类活动的响应[J].中国沙漠,2014,34(6):1665-1670.
[19] 杨汉波,王兆印,巩同梁,等.雅鲁藏布江中游地区植被与环境的关系[J].中国水土保持科学,2011,9(1):45-49+55.
[20] 李晓兵,史培军.中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析[J].植物生态学报,2000,24(3):379-382.
[21] 郭铌,朱燕君,王介民,等.近22年来西北不同类型植被NDVI变化与气候因子的关系[J].植物生态学报,2008,32(2):319-327.
[22] 李海东,沈渭寿,蔡博峰,等.雅鲁藏布江流域NDVI变化与风沙化土地演变的耦合关系[J].生态学报,2013,24:7729-7738.
[23] Shen W S,Li H D,Sun M,et al.Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet,China from 1975 to 2008[J].Global and Planetary Change,2012,86-87:37-44.
[24] 李海东,沈渭寿,燕守广,等.高寒河谷流动沙地生境因子变化及其对播种期的影响[J].山地学报,2013,31(6):647-655.
[25] 郑维列.雅鲁藏布江大拐弯地区蕨类植物科属区系特征分析[J].云南植物研究,1999,21(1):45-52.
[26] 张剑,覃家理,邓莉兰,等.西藏雅鲁藏布江中游陆生植被调查与评价[J].林业资源管理,2008,(4):118-123.
[27] 张德怀,孙爱芝,韩晓丽,等.雅鲁藏布江中游松属、冷杉属表土花粉对海拔的指示意义[J].山地学报,2012,30(4):478-483.
[28] 吕琳莉,刘湘伟,周红梅,等.雅鲁藏布江中下游年径流变化趋势分析[J].人民黄河,2013,35(5):27-29.
[29] 王国宏.祁连山北坡中段植物群落多样性的垂直分布格局[J].生物多样性,2002,(1):7-14.
[30] 沈泽昊,胡志伟,赵俊,等.安徽牯牛降的植物多样性垂直分布特征——兼论山顶效应的影响[J].山地学报,2007,25(2):160-168.
[31] 唐志尧,方精云.植物物种多样性的垂直分布格局[J].生物多样性,2004,12(1):20-28.
[32] 邓立斌,陈端吕,邓丽群.西藏雅鲁藏布大峡谷国家级自然保护区生态评价[J].林业科学,2011,47(5):1-6.
[33] 李海东,沈渭寿,刘波,等.西藏高寒河谷沙地不同演替阶段植被的高光谱特征[J].生态与农村环境学报,2014,30(4):521-525.
[34] 李海东,沈渭寿,佘光辉,等.西藏砂生槐种群结构与点格局分析[J].中国沙漠,2011,31(6):1443-1448.
No Suggested Reading articles found!