Journal of Desert Research ›› 2022, Vol. 42 ›› Issue (2): 223-233.DOI: 10.7522/j.issn.1000-694X.2022.00018
Yaowen Zhang(), Bo Zhang(
), Rongpeng Yao, Libing Wang
Received:
2021-12-29
Revised:
2022-03-02
Online:
2022-03-20
Published:
2022-03-30
Contact:
Bo Zhang
CLC Number:
Yaowen Zhang, Bo Zhang, Rongpeng Yao, Libing Wang. Temporal and spatial changes of vegetation coverage and water production in the Weihe River Basin from 2000 to 2020[J]. Journal of Desert Research, 2022, 42(2): 223-233.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00018
植被覆盖度等级 | NDVI | 面积比例/% | 土地覆盖类型 |
---|---|---|---|
低植被覆盖度 | <0.2 | 0.17 | 水域、沙漠、裸土、裸岩等 |
中低植被覆盖度 | 0.2-0.4 | 10.66 | 建成区、稀疏草地、耕地等 |
中植被覆盖度 | 0.4-0.6 | 38.60 | 耕地、中产草地、低郁闭林地、建成区绿地 |
中高植被覆盖度 | 0.6-0.8 | 34.10 | 中高产草地、灌木林地、耕地 |
高植被覆盖度 | >0.8 | 16.47 | 高产草地、密林地 |
Table 1 Types of vegetation cover
植被覆盖度等级 | NDVI | 面积比例/% | 土地覆盖类型 |
---|---|---|---|
低植被覆盖度 | <0.2 | 0.17 | 水域、沙漠、裸土、裸岩等 |
中低植被覆盖度 | 0.2-0.4 | 10.66 | 建成区、稀疏草地、耕地等 |
中植被覆盖度 | 0.4-0.6 | 38.60 | 耕地、中产草地、低郁闭林地、建成区绿地 |
中高植被覆盖度 | 0.6-0.8 | 34.10 | 中高产草地、灌木林地、耕地 |
高植被覆盖度 | >0.8 | 16.47 | 高产草地、密林地 |
变化趋势 | 变化率(b) | 显著性水平(a) | 面积占比/% |
---|---|---|---|
极显著退化 | b<0 | a<0.005 | 1.48 |
显著退化 | 0.005<a<0.05 | 0.94 | |
基本不变 | a>0.05 | 16.37 | |
显著增长 | b>0 | 0.005<a<0.05 | 12.01 |
极显著增长 | a<0.005 | 69.20 |
Table 2 Classification of significance test results
变化趋势 | 变化率(b) | 显著性水平(a) | 面积占比/% |
---|---|---|---|
极显著退化 | b<0 | a<0.005 | 1.48 |
显著退化 | 0.005<a<0.05 | 0.94 | |
基本不变 | a>0.05 | 16.37 | |
显著增长 | b>0 | 0.005<a<0.05 | 12.01 |
极显著增长 | a<0.005 | 69.20 |
时段 | 初始等级 | 转换等级 | 合计 | ||||
---|---|---|---|---|---|---|---|
低植被覆盖度 | 中低植被覆盖度 | 中植被覆盖度 | 中高植被覆盖度 | 高植被覆盖度 | |||
2000—2005年 | 低植被覆盖度 | 0.33 | 1.76 | 0.31 | 0.03 | 0.00 | 2.43 |
中低植被覆盖度 | 0.26 | 11.51 | 11.25 | 1.47 | 0.01 | 24.50 | |
中植被覆盖度 | 0.10 | 6.25 | 18.91 | 9.85 | 0.19 | 35.30 | |
中高植被覆盖度 | 0.03 | 0.58 | 4.63 | 17.61 | 5.06 | 27.91 | |
高植被覆盖度 | 0.00 | 0.02 | 0.13 | 2.05 | 7.67 | 9.87 | |
合计 | 0.71 | 20.12 | 35.23 | 31.01 | 12.93 | 100 | |
2005—2010年 | 低植被覆盖度 | 0.20 | 0.46 | 0.04 | 0.01 | 0.00 | 0.71 |
中低植被覆盖度 | 0.15 | 8.29 | 11.06 | 0.61 | 0.01 | 20.12 | |
中植被覆盖度 | 0.06 | 1.99 | 20.45 | 12.62 | 0.10 | 35.23 | |
中高植被覆盖度 | 0.02 | 0.16 | 2.35 | 23.08 | 5.40 | 31.01 | |
高植被覆盖度 | 0.00 | 0.00 | 0.02 | 0.84 | 12.07 | 12.93 | |
合计 | 0.44 | 10.90 | 33.93 | 37.16 | 17.57 | 100 | |
2010—2015年 | 低植被覆盖度 | 0.15 | 0.22 | 0.05 | 0.02 | 0.00 | 0.44 |
中低植被覆盖度 | 0.47 | 5.55 | 3.90 | 0.96 | 0.02 | 10.90 | |
中植被覆盖度 | 0.12 | 4.28 | 17.23 | 11.83 | 0.47 | 33.93 | |
中高植被覆盖度 | 0.04 | 0.37 | 3.74 | 23.17 | 9.84 | 37.16 | |
高植被覆盖度 | 0.00 | 0.01 | 0.04 | 0.50 | 17.03 | 17.57 | |
合计 | 0.78 | 10.42 | 24.96 | 36.47 | 27.36 | 100 | |
2015—2020年 | 低植被覆盖度 | 0.16 | 0.44 | 0.16 | 0.02 | 0.00 | 0.78 |
中低植被覆盖度 | 0.17 | 2.59 | 6.75 | 0.88 | 0.02 | 10.42 | |
中植被覆盖度 | 0.07 | 0.95 | 10.46 | 13.20 | 0.28 | 24.96 | |
中高植被覆盖度 | 0.06 | 0.29 | 3.58 | 26.35 | 6.18 | 36.47 | |
高植被覆盖度 | 0.01 | 0.04 | 0.22 | 3.07 | 24.03 | 27.36 | |
合计 | 0.47 | 4.31 | 21.17 | 43.53 | 30.52 | 100 |
Table 3 Spatial shift matrix of vegetation cover in Weihe River Basin from 2000 to 2020
时段 | 初始等级 | 转换等级 | 合计 | ||||
---|---|---|---|---|---|---|---|
低植被覆盖度 | 中低植被覆盖度 | 中植被覆盖度 | 中高植被覆盖度 | 高植被覆盖度 | |||
2000—2005年 | 低植被覆盖度 | 0.33 | 1.76 | 0.31 | 0.03 | 0.00 | 2.43 |
中低植被覆盖度 | 0.26 | 11.51 | 11.25 | 1.47 | 0.01 | 24.50 | |
中植被覆盖度 | 0.10 | 6.25 | 18.91 | 9.85 | 0.19 | 35.30 | |
中高植被覆盖度 | 0.03 | 0.58 | 4.63 | 17.61 | 5.06 | 27.91 | |
高植被覆盖度 | 0.00 | 0.02 | 0.13 | 2.05 | 7.67 | 9.87 | |
合计 | 0.71 | 20.12 | 35.23 | 31.01 | 12.93 | 100 | |
2005—2010年 | 低植被覆盖度 | 0.20 | 0.46 | 0.04 | 0.01 | 0.00 | 0.71 |
中低植被覆盖度 | 0.15 | 8.29 | 11.06 | 0.61 | 0.01 | 20.12 | |
中植被覆盖度 | 0.06 | 1.99 | 20.45 | 12.62 | 0.10 | 35.23 | |
中高植被覆盖度 | 0.02 | 0.16 | 2.35 | 23.08 | 5.40 | 31.01 | |
高植被覆盖度 | 0.00 | 0.00 | 0.02 | 0.84 | 12.07 | 12.93 | |
合计 | 0.44 | 10.90 | 33.93 | 37.16 | 17.57 | 100 | |
2010—2015年 | 低植被覆盖度 | 0.15 | 0.22 | 0.05 | 0.02 | 0.00 | 0.44 |
中低植被覆盖度 | 0.47 | 5.55 | 3.90 | 0.96 | 0.02 | 10.90 | |
中植被覆盖度 | 0.12 | 4.28 | 17.23 | 11.83 | 0.47 | 33.93 | |
中高植被覆盖度 | 0.04 | 0.37 | 3.74 | 23.17 | 9.84 | 37.16 | |
高植被覆盖度 | 0.00 | 0.01 | 0.04 | 0.50 | 17.03 | 17.57 | |
合计 | 0.78 | 10.42 | 24.96 | 36.47 | 27.36 | 100 | |
2015—2020年 | 低植被覆盖度 | 0.16 | 0.44 | 0.16 | 0.02 | 0.00 | 0.78 |
中低植被覆盖度 | 0.17 | 2.59 | 6.75 | 0.88 | 0.02 | 10.42 | |
中植被覆盖度 | 0.07 | 0.95 | 10.46 | 13.20 | 0.28 | 24.96 | |
中高植被覆盖度 | 0.06 | 0.29 | 3.58 | 26.35 | 6.18 | 36.47 | |
高植被覆盖度 | 0.01 | 0.04 | 0.22 | 3.07 | 24.03 | 27.36 | |
合计 | 0.47 | 4.31 | 21.17 | 43.53 | 30.52 | 100 |
1 | 刘国彬,上官周平,姚文艺,等.黄土高原生态工程的生态成效[J].中国科学院院刊,2017,32(1):11-19. |
2 | 张宝庆,吴普特,赵西宁.近30 a黄土高原植被覆盖时空演变监测与分析[J].农业工程学报,2011,27(4):287-293. |
3 | Wang Shuai, Fu B J, Piao S L,et al.Reduced sediment transport in the Yellow River due to anthropogenic changes[J].Nature Geoscience,2016,9:38-41. |
4 | Zhang B Q, He C S, Burnham M,et al.Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China[J].Science of the Total Environment,2016,539:436-449. |
5 | 王馨爽,吴梦月,马红利,等.渭河流域长时间序列NPP估算及时空变化特征分析[J].西北林学院学报,2020,35(6):205-211. |
6 | 庞家泰,段金亮,张瑞,等.2000—2019年渭河流域植被覆盖度时空演变特征及气候响应[J].水土保持研究,2021,28(5):230-237. |
7 | 李依璇,朱清科,石若莹,等.2000—2018年黄土高原植被覆盖时空变化及影响因素[J].中国水土保持科学,2021,19(4):60-68. |
8 | 何亮.黄土高原植被覆盖变化特征及驱动力分析[D].呼和浩特:内蒙古农业大学,2021. |
9 | 张翀,白子怡,李学梅,等.2001—2018年黄土高原植被覆盖人为影响时空演变及归因分析[J].干旱区地理,2021,44(1):188-196. |
10 | 杨洁,谢保鹏,张德罡.黄河流域生态系统服务权衡协同关系时空异质性[J].中国沙漠,2021,41(6):78-87. |
11 | 庄少豪.黄土高原生态系统服务功能对植被恢复的响应关系研究[D].西安:西安理工大学,2020. |
12 | 孙高鹏,刘宪锋,王小红,等.2001—2020年黄河流域植被覆盖变化及其影响因素[J].中国沙漠,2021,41(4):205-212. |
13 | 张琨,吕一河,傅伯杰,等.黄土高原植被覆盖变化对生态系统服务影响及其阈值[J].地理学报,2020,75(5):949-960. |
14 | 张宝庆,邵蕊,赵西宁,等.大规模植被恢复对黄土高原生态水文过程的影响[J].应用基础与工程科学学报,2020,28(3):594-606. |
15 | 张宝庆,田磊,赵西宁,等.植被恢复对黄土高原局地降水的反馈效应研究[J].中国科学:地球科学,2021,51(7):1080-1091. |
16 | 汤秋鸿.全球变化水文学:陆地水循环与全球变化[J].中国科学:地球科学,2020,50(3):436-438. |
17 | Su C H, Fu B J.Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes[J].Global and Planetary Change,2013,101:119-128. |
18 | Feng X M, Fu B J, Piao S L,et al.Revegetation in China's Loess Plateau is approaching sustainable water resource limits[J].Nature Climate Change,2016,6:1019-1022. |
19 | Fu B J, Wang S, Liu Yu,et al.Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J].Annual Review of Earth and Planetary Sciences,2017,45(1):223-243. |
20 | 杨晓楠.渭河流域(关天段)生态系统服务时空变化及权衡优化研究[D].西安:陕西师范大学,2016. |
21 | 周德成,赵淑清,朱超.退耕还林工程对黄土高原土地利用/覆被变化的影响:以陕西省安塞县为例[J].自然资源学报,2011,26(11):1866-1878. |
22 | 李艳忠,刘昌明,刘小莽,等.植被恢复工程对黄河中游土地利用/覆被变化的影响[J].自然资源学报,2016,31(12):2005-2020. |
23 | Budyko M I.Climate and Life[M].Translated from Russian by Miller D H.New York:Academic Press,1974. |
24 | 马明国,董立新,王雪梅.过去21 a中国西北植被覆盖动态监测与模拟[J].冰川冻土,2003,25(2):232-236. |
25 | 原丽娟,毕如田,徐立帅,等.沁河流域植被覆盖时空分异特征[J].生态学杂志,2019,38(4):1093-1103. |
26 | 陆一帆.近30年来渭河流域植被与气候变化互影响模式的探寻分析[J].北京测绘,2016(5):7-12. |
27 | 张林齐,任立良,江善虎,等.1982~2015年渭河流域植被变化特征及气候因素影响[J].水文,2018,38(2):66-72. |
28 | 傅志军,黄蓉,周毓栋,等.基于NDVI的渭河流域时空演变分析[J].湖北农业科学,2019,58(6):54-57. |
29 | 余东洋.渭河流域植被动态变化遥感时序分析及生态安全评价[D].西安:长安大学,2019. |
30 | 王丽霞,余东洋,刘招,等.渭河流域NDVI与气候因子时空变化及相关性研究[J].水土保持研究,2019,26(2):249-254. |
31 | 王丽霞,张珈玮,孟妮娜,等.基于CA-Markov的渭河流域NDVI时空变化模拟及预测[J].水土保持研究,2020,27(4):206-212. |
32 | 包玉斌,李婷,柳辉,等.基于InVEST模型的陕北黄土高原水源涵养功能时空变化[J].地理研究,2016,35(4):664-676. |
33 | 吕一河,胡健,孙飞翔,等.水源涵养与水文调节:和而不同的陆地生态系统水文服务[J].生态学报,2015,35(15):5191-5196. |
34 | 李盈盈,刘康,胡胜,等.陕西省子午岭生态功能区水源涵养能力研究[J].干旱区地理,2015,38(3):636-642. |
35 | 徐瑞瑞,高鹏,穆兴民,等.渭河流域水沙时空变化及其对人类活动的响应[J].人民黄河,2020,42(3):17-24. |
36 | Li T S, Xia J, Zhang L,et al.An improved complementary relationship for estimating evapotranspiration attributed to climate change and revegetation in the Loess Plateau, China[J].Journal of Hydrology,2021,592:125516. |
[1] | Yanhui Lei, Guodong Ding, Zimeng Li, Wenfeng Chi, Guanglei Gao, Yuanyuan Zhao. Land use/cover change and its ecosystem service value response in the Beijing-Tianjin sandstorm source control project area [J]. Journal of Desert Research, 2021, 41(6): 29-40. |
[2] | Baorong Xu, Yichuan Liu, Ying Dong, Gong Zhu, Yongzhong Zhang, Zhixiang Lu, Songbing Zou. Evaluation of habitat quality in Lanzhou Region based on InVEST model [J]. Journal of Desert Research, 2021, 41(5): 120-129. |
[3] | Mengtao Han, Jianjun Tu, Guiping Xu, Li Jiang. Spatio-temporal coordination between aquatic ecosystem services and economic development in the Yellow River Basin [J]. Journal of Desert Research, 2021, 41(4): 167-176. |
[4] | Jie Yang, Baopeng Xie, Degang Zhang. Spatial-temporal evolution of habitat quality and its influencing factors in the Yellow River Basin based on InVEST model and GeoDetector [J]. Journal of Desert Research, 2021, 41(4): 12-22. |
[5] | Xuegang Xing, Changzhen Yan, Junfeng Lu, Xiaohui Zhai, Haowei Jia, Jiali Xie. Response of vegetation index to degraded succession of alpine meadow in Qinghai, China [J]. Journal of Desert Research, 2021, 41(3): 203-213. |
[6] | Li Li, Qingqing Zhang, Yamei Wang, Hong Li, Xinfeng Zhao. Comprehensive assessment of ecosystem vulnerability, the value of service function and risk in Kezi River Basin in 2000-2018 [J]. Journal of Desert Research, 2021, 41(2): 164-172. |
[7] | Mengzhu Liu, Yanfang Wang, Hongwei Pei. The changes of land use and carbon storage in the northern farming-pastoral ecotone under the background of returning farmland to forest (grass) [J]. Journal of Desert Research, 2021, 41(1): 174-182. |
[8] | Hua Zhang, Huimin An. Analysis of NDVI variation characteristics and trend of Minqin Oasis from 1987 to 2019 based on GEE [J]. Journal of Desert Research, 2021, 41(1): 28-36. |
[9] | Lei Wu, Changbin Li, Liuming Wang, Xuhong Xie, Yuan Zhang, Jianmei Wei. Division and application of desert-oasis system in arid Northwest China based on ESA-LUC and MODIS-NDVI [J]. Journal of Desert Research, 2020, 40(6): 139-150. |
[10] | Liu Chan, Zhao Wenzhi, Liu Bing, Meng Yangyang. Distribution Characteristics and Dynamic Changes of Vegetation in Badain Jaran Desert: Based on UAV and MODIS Data [J]. Journal of Desert Research, 2019, 39(4): 92-102. |
[11] | Yue Xiyuan, Zuo Xiaoan, Chang Xueli, Xu Chong, Lv Peng, Zhang Jing, Zhao Shenglong, Cheng Qingping. NDVI of Typical Steppe and Desert Steppe in Inner Mongolia in Response to Meteorological Factors [J]. Journal of Desert Research, 2019, 39(3): 25-33. |
[12] | Tian Haijing, Sun Tao, Liu Xusheng, Kong Xiangji. Effect Evaluation of the Enclosure-Rehabilitation of Desertification Land in Cuogang Based on Time Series Remote Sensing Data [J]. Journal of Desert Research, 2019, 39(3): 155-162. |
[13] | Zhang Jiaqi, Zhang Bo, Ma Bin, Cao Bo, Liang Jingjing, Ma Shangqian. Spatial-temporal Variation of NDVI in Sanjiang Plain and Its Response to Climate Change [J]. Journal of Desert Research, 2019, 39(3): 206-213. |
[14] | Zhang Fuping, Li Xiaojuan, Feng Qi, Wang Huwei, Wei Yongfen, Bai Hao. Spatial and Temporal Variation of Water Conservation in the Upper Reaches of Heihe River Basin Based on InVEST Model [J]. Journal of Desert Research, 2018, 38(6): 1321-1329. |
[15] | Cao Bo, Zhang Bo, Ma Bin, Wang Guoqiang, Tang Min, Zhang Yaozong, Jia Yanqing. Spatial and Temporal Variations of NDVI in Gansu, China from 2000 to 2014 [J]. JOURNAL OF DESERT RESEARCH, 2018, 38(2): 418-427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech