Journal of Desert Research ›› 2022, Vol. 42 ›› Issue (6): 233-242.DOI: 10.7522/j.issn.1000-694X.2022.00045
Guangyu Hong1(), Xiaojiang Wang1(
), Tieshan Liu1, Hailong1, Zhenting Wu1, Huercha1, Xiaowei Gao1, Haifeng Yang1, Zhuofan Li1, Zihao Li1, Siqin2, Lejun Wang1
Received:
2022-02-10
Revised:
2022-03-22
Online:
2022-11-20
Published:
2023-01-09
Contact:
Xiaojiang Wang
CLC Number:
Guangyu Hong, Xiaojiang Wang, Tieshan Liu, Hailong, Zhenting Wu, Huercha, Xiaowei Gao, Haifeng Yang, Zhuofan Li, Zihao Li, Siqin, Lejun Wang. Applicability of Hydrus-1D Model in simulating the soil moisture in Hedysarum leave in Mu Us Sandy Land, China[J]. Journal of Desert Research, 2022, 42(6): 233-242.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00045
土层深度 /cm | 粒径组成/% | 容重 /(g·cm-3) | VG参数 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0.05—2.00 mm | 0.002—0.05 mm | <0.002 mm | θr | θs | α | n | Ks | l | ||
0—20 | 97.93 | 0.69 | 1.38 | 1.6507 | 0.0285 | 0.3398 | 0.0309 | 3.8507 | 36.1983 | 0.5 |
20—40 | 95.47 | 0.52 | 4.02 | 1.4860 | 0.0377 | 0.3948 | 0.0299 | 3.4402 | 32.1725 | 0.5 |
40—60 | 94.41 | 0.64 | 4.95 | 1.5149 | 0.0151 | 0.3869 | 0.0295 | 3.1932 | 25.6446 | 0.5 |
50—70 | 98.49 | 1.02 | 0.25 | 1.4782 | 0.0168 | 0.3917 | 0.0313 | 4.3366 | 56.3079 | 0.5 |
70—90 | 97.67 | 0.17 | 2.14 | 1.5286 | 0.0553 | 0.3787 | 0.0299 | 3.9854 | 43.3879 | 0.5 |
90—110 | 94.03 | 0.27 | 5.70 | 1.5259 | 0.0008 | 0.3844 | 0.0289 | 3.0738 | 22.9275 | 0.5 |
Tabel 1 Basic physical properties of soil and the hydraulic parameters
土层深度 /cm | 粒径组成/% | 容重 /(g·cm-3) | VG参数 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0.05—2.00 mm | 0.002—0.05 mm | <0.002 mm | θr | θs | α | n | Ks | l | ||
0—20 | 97.93 | 0.69 | 1.38 | 1.6507 | 0.0285 | 0.3398 | 0.0309 | 3.8507 | 36.1983 | 0.5 |
20—40 | 95.47 | 0.52 | 4.02 | 1.4860 | 0.0377 | 0.3948 | 0.0299 | 3.4402 | 32.1725 | 0.5 |
40—60 | 94.41 | 0.64 | 4.95 | 1.5149 | 0.0151 | 0.3869 | 0.0295 | 3.1932 | 25.6446 | 0.5 |
50—70 | 98.49 | 1.02 | 0.25 | 1.4782 | 0.0168 | 0.3917 | 0.0313 | 4.3366 | 56.3079 | 0.5 |
70—90 | 97.67 | 0.17 | 2.14 | 1.5286 | 0.0553 | 0.3787 | 0.0299 | 3.9854 | 43.3879 | 0.5 |
90—110 | 94.03 | 0.27 | 5.70 | 1.5259 | 0.0008 | 0.3844 | 0.0289 | 3.0738 | 22.9275 | 0.5 |
时间段 | R2 | 平均误差ME/% | 均方根误差RMSE/% | 相对误差MRE/% |
---|---|---|---|---|
模拟阶段 | 0.587 | -0.0053 | 0.00017 | 0.2779 |
验证阶段 | 0.547 | -0.0087 | 0.00038 | 0.3081 |
Table 2 Analysis of soil moisture simulations
时间段 | R2 | 平均误差ME/% | 均方根误差RMSE/% | 相对误差MRE/% |
---|---|---|---|---|
模拟阶段 | 0.587 | -0.0053 | 0.00017 | 0.2779 |
验证阶段 | 0.547 | -0.0087 | 0.00038 | 0.3081 |
类别 | 土层深度 /cm | 平均误差ME/% | 均方根误差RMSE/% | 相对误差MRE/% |
---|---|---|---|---|
建模 阶段 | 10 | -0.0054 | 0.0104 | 0.3506 |
30 | -0.0069 | 0.0149 | 0.3494 | |
50 | -0.0060 | 0.0137 | 0.3414 | |
70 | 0.0028 | 0.0040 | 0.1490 | |
90 | -0.0119 | 0.0217 | 0.5225 | |
110 | -0.0047 | 0.0071 | 1.0026 | |
检验 阶段 | 10 | -0.0051 | 0.0128 | 0.3175 |
30 | -0.0063 | 0.0125 | 0.1962 | |
50 | -0.0232 | 0.0265 | 0.6655 | |
70 | -0.0004 | 0.0055 | 0.1518 | |
90 | 0.0069 | 0.0230 | 0.2812 | |
110 | -0.0241 | 0.0267 | 6.0432 |
Tabel 3 Index evaluation of 0-110 cm soil layers in Hedysarum plot
类别 | 土层深度 /cm | 平均误差ME/% | 均方根误差RMSE/% | 相对误差MRE/% |
---|---|---|---|---|
建模 阶段 | 10 | -0.0054 | 0.0104 | 0.3506 |
30 | -0.0069 | 0.0149 | 0.3494 | |
50 | -0.0060 | 0.0137 | 0.3414 | |
70 | 0.0028 | 0.0040 | 0.1490 | |
90 | -0.0119 | 0.0217 | 0.5225 | |
110 | -0.0047 | 0.0071 | 1.0026 | |
检验 阶段 | 10 | -0.0051 | 0.0128 | 0.3175 |
30 | -0.0063 | 0.0125 | 0.1962 | |
50 | -0.0232 | 0.0265 | 0.6655 | |
70 | -0.0004 | 0.0055 | 0.1518 | |
90 | 0.0069 | 0.0230 | 0.2812 | |
110 | -0.0241 | 0.0267 | 6.0432 |
土层深度 /cm | 类别 | 参数 | 降水量/mm(降水时长/h) | |||
---|---|---|---|---|---|---|
32.4(8) | 14.8(10) | 63.61(8) | 24.8(9) | |||
10 | 模拟值 | 最大差值/(cm3·cm-3) | 0.021 | 0.020 | 0.039 | 0.036 |
入渗速率/(cm3·h-1) | 0.001 | 0.001 | 0.005 | 0.002 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.047 | 0.022 | 0.039 | 0.036 | |
入渗速率/(cm3·h-1) | 0.008 | 0.002 | 0.005 | 0.0045 | ||
30 | 模拟值 | 最大差值/(cm3·cm-3) | 0.050 | 0.025 | 0.083 | 0.031 |
入渗速率/(cm3·h-1) | 0.003 | 0.0007 | 0.0006 | 0.001 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.082 | 0.000 | 0.083 | 0.037 | |
入渗速率/(cm3·h-1) | 0.009 | 0.000 | 0.010 | 0.002 | ||
50 | 模拟值 | 最大差值/(cm3·cm-3) | 0.052 | 0.010 | 0.080 | 0.021 |
入渗速率/(cm3·h-1) | 0.001 | 0.0001 | 0.008 | 0.0004 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.010 | 0.000 | 0.070 | 0.009 | |
入渗速率/(cm3·h-1) | 0.0003 | 0.000 | 0.008 | 0.0002 | ||
70 | 模拟值 | 最大差值/(cm3·cm-3) | 0.0114 | 0.000 | 0.026 | 0.008 |
入渗速率/(cm3·h-1) | 0.0002 | 0.000 | 0.002 | 0.0001 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.0090 | 0.000 | 0.021 | 0.006 | |
入渗速率/(cm3·h-1) | 0.0002 | 0.000 | 0.001 | 0.00008 | ||
90 | 模拟值 | 最大差值/(cm3·cm-3) | 0.000 | 0.000 | 0.038 | 0.003 |
入渗速率/(cm3·h-1) | 0.000 | 0.000 | 0.002 | 0.00005 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.000 | 0.000 | 0.150 | 0.004 | |
入渗速率/(cm3·h-1) | 0.000 | 0.000 | 0.010 | 0.00006 | ||
110 | 模拟值 | 最大差值/(cm3·cm-3) | 0.000 | 0.000 | 0.067 | 0.000 |
入渗速率/(cm3·h-1) | 0.000 | 0.000 | 0.002 | 0.000 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.000 | 0.000 | 0.000 | 0.000 | |
入渗速率/(cm3·h-1) | 0.000 | 0.000 | 0.000 | 0.000 |
Table 4 Simulation of soil water infiltration after different rainfall events
土层深度 /cm | 类别 | 参数 | 降水量/mm(降水时长/h) | |||
---|---|---|---|---|---|---|
32.4(8) | 14.8(10) | 63.61(8) | 24.8(9) | |||
10 | 模拟值 | 最大差值/(cm3·cm-3) | 0.021 | 0.020 | 0.039 | 0.036 |
入渗速率/(cm3·h-1) | 0.001 | 0.001 | 0.005 | 0.002 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.047 | 0.022 | 0.039 | 0.036 | |
入渗速率/(cm3·h-1) | 0.008 | 0.002 | 0.005 | 0.0045 | ||
30 | 模拟值 | 最大差值/(cm3·cm-3) | 0.050 | 0.025 | 0.083 | 0.031 |
入渗速率/(cm3·h-1) | 0.003 | 0.0007 | 0.0006 | 0.001 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.082 | 0.000 | 0.083 | 0.037 | |
入渗速率/(cm3·h-1) | 0.009 | 0.000 | 0.010 | 0.002 | ||
50 | 模拟值 | 最大差值/(cm3·cm-3) | 0.052 | 0.010 | 0.080 | 0.021 |
入渗速率/(cm3·h-1) | 0.001 | 0.0001 | 0.008 | 0.0004 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.010 | 0.000 | 0.070 | 0.009 | |
入渗速率/(cm3·h-1) | 0.0003 | 0.000 | 0.008 | 0.0002 | ||
70 | 模拟值 | 最大差值/(cm3·cm-3) | 0.0114 | 0.000 | 0.026 | 0.008 |
入渗速率/(cm3·h-1) | 0.0002 | 0.000 | 0.002 | 0.0001 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.0090 | 0.000 | 0.021 | 0.006 | |
入渗速率/(cm3·h-1) | 0.0002 | 0.000 | 0.001 | 0.00008 | ||
90 | 模拟值 | 最大差值/(cm3·cm-3) | 0.000 | 0.000 | 0.038 | 0.003 |
入渗速率/(cm3·h-1) | 0.000 | 0.000 | 0.002 | 0.00005 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.000 | 0.000 | 0.150 | 0.004 | |
入渗速率/(cm3·h-1) | 0.000 | 0.000 | 0.010 | 0.00006 | ||
110 | 模拟值 | 最大差值/(cm3·cm-3) | 0.000 | 0.000 | 0.067 | 0.000 |
入渗速率/(cm3·h-1) | 0.000 | 0.000 | 0.002 | 0.000 | ||
实测值 | 最大差值/(cm3·cm-3) | 0.000 | 0.000 | 0.000 | 0.000 | |
入渗速率/(cm3·h-1) | 0.000 | 0.000 | 0.000 | 0.000 |
1 | Zhang Y, Peng C H, Li W Z,et al.Multiple afforestation programs accelerate the greenness in the 'Three North' region of China from 1982 to 2013[J].Ecological Indicators,2016,61:404-412. |
2 | Wang Y Q, Shao M A, Zhu Y J,et al.Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J].Agricultural & Forest Meteorology,2011,151:437-448. |
3 | Lyu Y H, Fu B J, Feng X M,et al.A policy-driven large scale ecological restoration:quantifying ecosystem services changes in the Loess Plateau of China[J].PLoS One,2012,7(2):1-10. |
4 | 郑云珠,赵鑫,朱超毛,等.乌素沙地固定沙丘表层土壤水分时间稳定性特征[J].节水灌溉,2021(11):41-46. |
5 | 刘斐耀,尤全刚,吴思渊,等.干旱区绿洲耕地撂荒与复耕对土壤水力性质的影响[J].中国沙漠,2021,41(6):169-178. |
6 | 刘姣,艾宁,宗巧鱼,等.毛乌素沙地南缘臭柏群落土壤水分空间分布特征[J].水土保持学报,2019,33(5):79-84. |
7 | 裴艳武,黄来明,邵明安,等.毛乌素沙地不同地下水位埋深下土壤水补给特征及影响因素[J].农业工程学报,2021,37(12):108-116. |
8 | 高月升,董振国,朱贵兵.地下水浅埋条件下毛乌素沙地农田土壤水分动态特征[J].地下水,2021,43(3):6-8. |
9 | 朱雅娟,崔清国,杜娟,等.毛乌素沙地三种灌木群落的水分利用过程[J].生态学报,2020,40(13):4470-4478. |
10 | 段良霞,黄明斌,张洛丹,等.黄土高原沟壑区坡地土壤水分状态空间模拟[J].水科学进展,2015,26(5):649-659. |
11 | 黄克威,王根绪,宋春林,等.基于LSTM的青藏高原冻土区典型小流域径流模拟及预测[J].冰川冻土,2021,43(4):1144-1156. |
12 | 张洛丹,张瑜,黄明斌,等.黄土高塬沟壑区两种乔木林土壤水分平衡的模拟[J].水土保持研究,2015,22(2):26-31. |
13 | 王宇祥,刘廷玺,段利民,等.半干旱地区半流动沙丘水分深层渗漏量及其对降雨格局的响应[J].应用生态学报,2020,31(8):2710-2720. |
14 | 巩炜,胡广录,付鹏程,等.干旱区沙漠-绿洲过渡带固沙植物的土壤水分入渗特征[J].中国沙漠,2020,40(5):200-208. |
15 | Pooja P P, Naveen J, Balaji N.Quantifying surface water and ground water interactions using a coupled SWAT-FEM model:implications of management practices on hydrological processes in irrigated river basins[J]Water Resources Management,2021,35:2781-2797. |
16 | 易小波,邵明安,赵春雷,等.黄土高原南北样带不同土层土壤容重变异分析与模拟[J].农业机械学报,2017,48(4):198-205. |
17 | 王宇祥,刘廷玺,段利民,等.科尔沁不同类型沙丘土壤水分时空变化特征及其环境影响因子[J].水土保持学报,2020,34(6):125-134. |
18 | 王宇祥,刘廷玺,段利民,等.基于Hydrus-1D模型的科尔沁沙地沙丘-草甸相间区土壤水分动态模拟[J].中国沙漠,2020,40(2):195-205. |
19 | Saito H, Simunek J, Scanlon B R,et al.Numerical analysis of coupled water,vapor and heat transport in the vadose zone using HYDRUS[J].Vadose Zone Journal,2006,5:784-800. |
20 | Simunek J, Saito H, Sakai M,et al.The HYDRUS-1D Software Package for Simulating the One-dimensional Movement of Water,Heat,and Multiple Solutes in Variably-saturated Media[Z].Riverside, CA,USA:Department of Environmental Sciences,University of California Riverside,2005. |
21 | 任利东,黄明斌,樊军.不同类型层状土壤持水能力的研究[J].农业工程学报,2013,29(19):105-111. |
22 | 李冰冰,王云强,李志.HYDRUS-1D模型模拟渭北旱塬深剖面土壤水分的适用性[J].应用生态学报,2019,30(2):398-404. |
23 | 杨玉峥,林青,王松禄,等.大沽河中游地区土壤水与浅层地下水转化关系研究[J]土壤学,2015,52(3):547-557. |
24 | 王国帅,史海滨,李仙岳,等.基于HYDRUS-1D模型的荒漠绿洲水盐运移模拟与评估[J].农业机械学报,2021,37(8):87-98. |
25 | 洪光宇,吴建新,苏雅拉巴雅尔,等.毛乌素沙地退耕还林工程灌木林生态系统服务功能评价[J].内蒙古林业科技,2019,45(4):22-28. |
26 | Simunek J.The HYDRUS 1D Software Package for Simulating the One-dimensional Movement of Water,Heat,and Multiple Solutes in Variably Saturated Porous Media[Z].Hydrus Software,2005:68. |
27 | van Genuchten M.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Science Society of America Journal,1980,44:892-898. |
28 | Feedes R A.Simulation of field water use and crop yield[J].Soil Science,1978,129(3):194-209. |
29 | 何康康,杨艳敏,杨永辉.基于HYDRUS-1D模型的华北低平原区不同微咸水利用模式下土壤水盐运移的模拟[J].中国生态农业学报,2016,24(8):1059-1070. |
30 | 曹巧红,龚元石.应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征[J].植物营养与肥料学报,2003(2):139-145. |
31 | 洪光宇,王晓江,刘果厚,等.毛乌素沙地杨柴灌木林土壤水分对不同降雨格局的响应[J].水土保持通报,2021,41(2):76-83. |
32 | 吴元芝,黄明斌.基于Hydrus-1D模型的玉米根系吸水影响因素分析[J].农业工程学报,2011,27:66-73. |
[1] | Lixia Gu, Ping Lv, Fang Ma, Guoxiang Chen, Zhun Liang, Mingjing Xu, Ying Yang. Drift potential characteristics of Mu Us Sandy Land calculated with different data sources [J]. Journal of Desert Research, 2022, 42(5): 54-62. |
[2] | Chunyan Zhao, Jie Qin, Xiaohui He, Dongmeng Zhou. Effects of sand burial on typical desert plants [J]. Journal of Desert Research, 2022, 42(5): 63-72. |
[3] | Xinying Liu, Ming Jin, Fan Yang, Yapeng Ma, Hui Liu, Xiaoyun Sun, Dunsheng Xia. A preliminary study of environmental changes since middle Holocene and its impacts on the evolution of civilization in the eastern Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(5): 92-100. |
[4] | Yuyan Ren, Yufeng Zheng, Yandong Zhang, Haibing Wang, Shiqiang Wang, Jinjun He. Evaluation on development sustainability of kulun eco-economic circle in the Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(4): 264-272. |
[5] | Honglin Lian, Xueying Han, Yali Liu, Yuqing Han, Wenbin Yang, Wei Xiong. Study on spatiotemporal characteristics of atmospheric drought from 1981 to 2020 in the Mu Us Sandy Land of China based on SPEI index [J]. Journal of Desert Research, 2022, 42(4): 71-80. |
[6] | Shuo Qiao, Haibing Wang, Hejun Zuo, Xiya Liu, Yueru Wu. Evolution of ecological service value and network pattern of Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(3): 118-126. |
[7] | Shiyang Chen, Rong Yang, Yongzhong Su, Zeyu Du. Characteristics of soil respiration in farmland of Hexi oasis and its response to long-term fertilization [J]. Journal of Desert Research, 2022, 42(3): 178-186. |
[8] | Ming Yan, Yinghua Zhang, Li He, Weiming Cheng, Suiji Wang, Jiongxin Xu. Blocking effect of upper reaches of Wuding River on desertification [J]. Journal of Desert Research, 2022, 42(2): 62-68. |
[9] | Hairong Liang, Tao Wang, Yu Yang, Wei Feng, Honglin Lian, Xuefeng Liu, Jiatao Li, Jia Liu. Comparison of deep soil recharge characteristics between Mu Us Sandy Land and Hunshandake Sandy Land [J]. Journal of Desert Research, 2022, 42(2): 69-76. |
[10] | Xiaoqin Yuan, Shengquan Liu, Feng Ai, Zheng Zhang, Qiang Li, Jinyu Jiang, Changchun Shi. Wind erosion resistance of litter of Salix psammophila community in the southeast edge of Mu Us Sandy Land, China [J]. Journal of Desert Research, 2022, 42(1): 134-138. |
[11] | Wenzhi Zhao, Xuelian Bai, Chan Liu. Research on vegetation sand control around the south edge of Badain Jaran Sand Sea, China [J]. Journal of Desert Research, 2022, 42(1): 5-11. |
[12] | Feiyao Liu, Quangang You, Siyuan Wu, Cuihua Huang, Jing Pan, Shaoxiu Ma, Xiaojie Chen, Xian Xue. Effects of abandonment and recultivation of farmland on soil hydraulic properties in a typical oasis of arid regions [J]. Journal of Desert Research, 2021, 41(6): 169-178. |
[13] | Lin Shi, Yuxing Zhao, Eerdun Hasi, Ping Zhang, Yingjun Xu, Zhuoran Wang. Changes of vegetation and soil nutrient on windward slope of dune under sand barrier environment in Mu Us Sandy Land [J]. Journal of Desert Research, 2021, 41(5): 140-146. |
[14] | Rui Si, Bing Liu, Wenzhi Zhao, Zhaocen Zhu, Ying Zhao. Species diversity and stability patterns of plant communities in the tail area of the Heihe River [J]. Journal of Desert Research, 2021, 41(3): 174-184. |
[15] | Xueshang Chang, Guoqiao Chang. Advances in research and prospect on soil moisture in arid and semi-arid areas [J]. Journal of Desert Research, 2021, 41(1): 156-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech