Journal of Desert Research ›› 2022, Vol. 42 ›› Issue (6): 288-294.DOI: 10.7522/j.issn.1000-694X.2022.00047
Ling Tao1,2(), Hanru Ren1,2, Yilei Zhou1, Jun Ren1,2(
)
Received:
2022-01-04
Revised:
2022-03-23
Online:
2022-11-20
Published:
2023-01-09
Contact:
Jun Ren
CLC Number:
Ling Tao, Hanru Ren, Yilei Zhou, Jun Ren. Effects of water and nutrient supply on growth of moss crust mixed with attapulgite[J]. Journal of Desert Research, 2022, 42(6): 288-294.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00047
变异来源 | df | F | P |
---|---|---|---|
生物型固沙材料 | 2 | 129.8 | <0.001 |
接种时间 | 2 | 69.40 | <0.001 |
交互作用 | 4 | 167.7 | <0.001 |
Table 1 Two-factor analysis of variance for chlorophyll-a of six biological sand-fixing materials and four culture times
变异来源 | df | F | P |
---|---|---|---|
生物型固沙材料 | 2 | 129.8 | <0.001 |
接种时间 | 2 | 69.40 | <0.001 |
交互作用 | 4 | 167.7 | <0.001 |
材料编号 | 培养天数/d | F值 | |||
---|---|---|---|---|---|
20 | 40 | 60 | 80 | ||
BSM31 | 0.180±0.003Ab | 0.184±0.004Ab | 0.196±0.004Ac | 0.127±0.068Bc | 8.24* |
BSM21 | 0.188±0.001b | 0.194±0.001b | 0.202±0.001c | 0.213±0.001b | 3.45 |
BSM11 | 0.203±0.002Ba | 0.218±0.001ABa | 0.247±0.006Ba | 0.280±0.008Aa | 8.69* |
BSM10 | 0.164±0.005Bb | 0.193±0.008Ab | 0.202±0.001Ac | 0.204±0.001Ab | 8.56* |
BSM12 | 0.195±0.003Cb | 0.214±0.001Ba | 0.218±0.005ABb | 0.228±0.001Ab | 9.78** |
BSM13 | 0.191±0.002Cb | 0.208±0.001Ba | 0.215±0.001Bb | 0.225±0.001Ab | 9.32* |
F值 | 6.98* | 10.24** | 9.34** | 8.56* |
Table 2 The chlorophyll-a content of biological sand-fixing materials mixed with cultural moss crust and sand-fixing material in six ratios for application after 80 days inoculating period
材料编号 | 培养天数/d | F值 | |||
---|---|---|---|---|---|
20 | 40 | 60 | 80 | ||
BSM31 | 0.180±0.003Ab | 0.184±0.004Ab | 0.196±0.004Ac | 0.127±0.068Bc | 8.24* |
BSM21 | 0.188±0.001b | 0.194±0.001b | 0.202±0.001c | 0.213±0.001b | 3.45 |
BSM11 | 0.203±0.002Ba | 0.218±0.001ABa | 0.247±0.006Ba | 0.280±0.008Aa | 8.69* |
BSM10 | 0.164±0.005Bb | 0.193±0.008Ab | 0.202±0.001Ac | 0.204±0.001Ab | 8.56* |
BSM12 | 0.195±0.003Cb | 0.214±0.001Ba | 0.218±0.005ABb | 0.228±0.001Ab | 9.78** |
BSM13 | 0.191±0.002Cb | 0.208±0.001Ba | 0.215±0.001Bb | 0.225±0.001Ab | 9.32* |
F值 | 6.98* | 10.24** | 9.34** | 8.56* |
培养天数/d | 变异来源 | df | F值 | P |
---|---|---|---|---|
20 | 水分 | 2 | 12.85 | <0.001 |
营养 | 2 | 29.47 | <0.001 | |
水分×营养 | 4 | 16.79 | <0.001 | |
40 | 水分 | 2 | 19.86 | <0.001 |
营养 | 2 | 45.62 | <0.001 | |
水分×营养 | 4 | 17.97 | <0.001 | |
60 | 水分 | 2 | 36.25 | <0.001 |
营养 | 2 | 17.89 | <0.001 | |
水分×营养 | 4 | 123.45 | <0.001 | |
80 | 水分 | 2 | 42.35 | <0.001 |
营养 | 2 | 51.26 | <0.001 | |
水分×营养 | 4 | 15.68 | <0.001 |
Table 3 Two-factor analysis of variance of chlorophyll-a content of BSM11 for inoculation after 80 days under interval water supply and nutrient conditions
培养天数/d | 变异来源 | df | F值 | P |
---|---|---|---|---|
20 | 水分 | 2 | 12.85 | <0.001 |
营养 | 2 | 29.47 | <0.001 | |
水分×营养 | 4 | 16.79 | <0.001 | |
40 | 水分 | 2 | 19.86 | <0.001 |
营养 | 2 | 45.62 | <0.001 | |
水分×营养 | 4 | 17.97 | <0.001 | |
60 | 水分 | 2 | 36.25 | <0.001 |
营养 | 2 | 17.89 | <0.001 | |
水分×营养 | 4 | 123.45 | <0.001 | |
80 | 水分 | 2 | 42.35 | <0.001 |
营养 | 2 | 51.26 | <0.001 | |
水分×营养 | 4 | 15.68 | <0.001 |
培养天数/d | 营养处理 | 间歇供水天数/d | F值 | ||
---|---|---|---|---|---|
6 | 3 | 1 | |||
20 | 蒸馏水 | 0.177±0.002Aa | 0.192±0.001Ba | 0.204±0.001Ba | 12.67** |
50%营养 | 0.191±0.001Ab | 0.208±0.001Ba | 0.224±0.001Bb | 16.28** | |
100%营养 | 0.172±0.005a | 0.187±0.001b | 0.193±0.001a | 2.45 | |
F值 | 8.35** | 9.82*** | 12.56*** | ||
40 | 蒸馏水 | 0.166±0.001A | 0.174±0.001B | 0.181±0.001Bc | 7.35* |
50%营养 | 0.171±0.001 | 0.178±0.001 | 0.186±0.001 | 3.14 | |
100%营养 | 0.169±0.001A | 0.174±0.001A | 0.183±0.001B | 6.31* | |
F值 | 2.98 | 2.78 | 3.19 | ||
60 | 蒸馏水 | 0.158±0.007Aa | 0.165±0.001Ba | 0.182±0.001Ca | 8.25** |
50%营养 | 0.175±0.001Ab | 0.187±0.001Bb | 0.196±0.001Cb | 7.96* | |
100%营养 | 0.174±0.001Ab | 0.185±0.002Bb | 0.190±0.001Cb | 9.16** | |
F值 | 9.24** | 7.36* | 8.25** | ||
80 | 蒸馏水 | 0.162±0.007Aa | 0.169±0.001Aa | 0.183±0.001Ba | 8.25** |
50%营养 | 0.179±0.001Ab | 0.196±0.001Bb | 0.206±0.001Bb | 7.96* | |
100%营养 | 0.180±0.001Ab | 0.195±0.002Bb | 0.198±0.001Bb | 9.16** | |
F值 | 9.24** | 7.36* | 8.25** |
Table 4 The chlorophyll-a content of BSM11 under interval water supply and nutrient conditions
培养天数/d | 营养处理 | 间歇供水天数/d | F值 | ||
---|---|---|---|---|---|
6 | 3 | 1 | |||
20 | 蒸馏水 | 0.177±0.002Aa | 0.192±0.001Ba | 0.204±0.001Ba | 12.67** |
50%营养 | 0.191±0.001Ab | 0.208±0.001Ba | 0.224±0.001Bb | 16.28** | |
100%营养 | 0.172±0.005a | 0.187±0.001b | 0.193±0.001a | 2.45 | |
F值 | 8.35** | 9.82*** | 12.56*** | ||
40 | 蒸馏水 | 0.166±0.001A | 0.174±0.001B | 0.181±0.001Bc | 7.35* |
50%营养 | 0.171±0.001 | 0.178±0.001 | 0.186±0.001 | 3.14 | |
100%营养 | 0.169±0.001A | 0.174±0.001A | 0.183±0.001B | 6.31* | |
F值 | 2.98 | 2.78 | 3.19 | ||
60 | 蒸馏水 | 0.158±0.007Aa | 0.165±0.001Ba | 0.182±0.001Ca | 8.25** |
50%营养 | 0.175±0.001Ab | 0.187±0.001Bb | 0.196±0.001Cb | 7.96* | |
100%营养 | 0.174±0.001Ab | 0.185±0.002Bb | 0.190±0.001Cb | 9.16** | |
F值 | 9.24** | 7.36* | 8.25** | ||
80 | 蒸馏水 | 0.162±0.007Aa | 0.169±0.001Aa | 0.183±0.001Ba | 8.25** |
50%营养 | 0.179±0.001Ab | 0.196±0.001Bb | 0.206±0.001Bb | 7.96* | |
100%营养 | 0.180±0.001Ab | 0.195±0.002Bb | 0.198±0.001Bb | 9.16** | |
F值 | 9.24** | 7.36* | 8.25** |
指标 | 变异来源 | df | F值 | P |
---|---|---|---|---|
厚度 | 水分 | 2 | 30.23 | <0.001 |
营养 | 2 | 68.15 | <0.001 | |
水分×营养 | 4 | 49.94 | <0.001 | |
抗压强度 | 水分 | 2 | 17.24 | <0.001 |
营养 | 2 | 2.32 | >0.05 | |
水分×营养 | 4 | 11.13 | <0.01 |
Table 5 Two-factor analysis of variance in the effects of moisture and nutrient conditions on the development of BSM11
指标 | 变异来源 | df | F值 | P |
---|---|---|---|---|
厚度 | 水分 | 2 | 30.23 | <0.001 |
营养 | 2 | 68.15 | <0.001 | |
水分×营养 | 4 | 49.94 | <0.001 | |
抗压强度 | 水分 | 2 | 17.24 | <0.001 |
营养 | 2 | 2.32 | >0.05 | |
水分×营养 | 4 | 11.13 | <0.01 |
指标 | 营养处理 | 供水间歇天数/d | F值 | ||
---|---|---|---|---|---|
6 | 3 | 1 | |||
厚度/mm | 蒸馏水 | 7.21±1.35A | 7.26±2.05Aa | 8.12±1.26B | 8.25** |
50%营养 | 7.75±0.93A | 8.36±1.03Bb | 8.64±1.33B | 7.96* | |
100%营养 | 7.41±1.22A | 8.18±0.95Bb | 8.23±2.14B | 9.16** | |
F值 | 2.24 | 7.36* | 2.25 | ||
抗压强度/N | 蒸馏水 | 37.31±6.36A | 37.25±2.05Aa | 38.65±3.25Bab | 1.89 |
50%营养 | 37.45±5.36A | 40.23±6.13Bb | 41.26±8.65Ba | 7.96* | |
100%营养 | 36.46±1.22A | 36.56±2.15Ba | 35.26±12.14Bb | 2.16 | |
F值 | 2.24 | 7.36* | 6.32* |
Table 6 The growth traits of BSM11 under different nutrient treatments and interval water supply
指标 | 营养处理 | 供水间歇天数/d | F值 | ||
---|---|---|---|---|---|
6 | 3 | 1 | |||
厚度/mm | 蒸馏水 | 7.21±1.35A | 7.26±2.05Aa | 8.12±1.26B | 8.25** |
50%营养 | 7.75±0.93A | 8.36±1.03Bb | 8.64±1.33B | 7.96* | |
100%营养 | 7.41±1.22A | 8.18±0.95Bb | 8.23±2.14B | 9.16** | |
F值 | 2.24 | 7.36* | 2.25 | ||
抗压强度/N | 蒸馏水 | 37.31±6.36A | 37.25±2.05Aa | 38.65±3.25Bab | 1.89 |
50%营养 | 37.45±5.36A | 40.23±6.13Bb | 41.26±8.65Ba | 7.96* | |
100%营养 | 36.46±1.22A | 36.56±2.15Ba | 35.26±12.14Bb | 2.16 | |
F值 | 2.24 | 7.36* | 6.32* |
1 | Antoninka A, Bowker M A, Reed S C,et al.Production of greenhouse‐grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function[J].Restoration Ecology,2016,24(3):324-335. |
2 | Chiquoine L P, Abella S R, Bowker M A.Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem[J].Ecological Applications:A Publication of the Ecological Society of America,2016,26(4):1260-1272. |
3 | Kidron G J.The role of crust thickness in runoff generation from microbiotic crusts[J].Hydrological Processes,2015,29(7):1783-1792. |
4 | Zheng Y P, Xu M, Zhao J C,et al.Effects of inoculated Microcoleus vaginatus on the structure and function of biological soil crusts of desert[J].Biology and Fertility of Soils,2011,47(4):473-480. |
5 | Zhang B C, Zhou X B, Zhang Y M.Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert,Xingjiang[J].Journal of Arid Land,2015,7(1):101-109. |
6 | Zhang J, Zhang Y M.Diurnal variations of chlorophyll fluorescence and CO2 exchange of biological soil crusts in different successional stages in the Gurbantunggut Desert of northwestern China[J].Ecological Research,2014,29(2):289-298. |
7 | Zaady E, Katra I, Yizhaq H,et al.Inferring the impact of rainfall gradient on biocrusts’ developmental stage and thus on soil physical structures in sand dunes[J].Aeolian Research,2014,13:81-89. |
8 | Zhou X B, Zhang Y M, Yin B F.Divergence in physiological responses between cyanobacterial and lichen crusts to a gradient of simulated nitrogen deposition[J].Plant and Soil,2016,399(1):121-134. |
9 | Sinsabaugh R L, Ebelnap J, Erudgers J,et al.Soil microbial responses to nitrogen addition in arid ecosystems[J].Frontiers in Microbiology,2015,6:819. |
10 | Zheng J L, Peng C R, Li H,et al.The role of non-rainfall water on physiological activation in desert biological soil crusts[J].Journal of Hydrology,2018,556:790-799. |
11 | Strong C L, Bullard J E, Burford M A,et al.Response of cyanobacterial soil crusts to moisture and nutrient availability[J].Catena,2013,109:195-202. |
12 | Chen L, Xie Z, Hu Z,et al.Chenet al.Man-made desert algal crusts as affected by environmental factors in Inner Mongolia,China[J].Journal of Arid Environments,2006,67:521-527. |
13 | Chock T, Antoninka A J, Faist A M,et al.Responses of biological soil crusts to rehabilitation strategies[J].Journal of Arid Environments,2019,163:77-85. |
14 | Lan S B, Wu L, Zhang D L,et al.Effects of drought and salt stresses on man-made cyanobacterial crusts[J].European Journal of Soil Biology,2010,46(6):381-386. |
15 | 周晓兵,张丙昌,张元明.生物土壤结皮固沙理论与实践[J].中国沙漠,2021,41(1):164-173. |
16 | Felde V J M N L, Chamizo S, Felix-Henningsen P,et al.What stabilizes biological soil crusts in the Negev Desert?[J].Plant and Soil,2018,429(1/2):9-18. |
17 | Hui R, Zhao R M, Liu L V,et al.Changes in winter snow depth affects photosynthesis and physiological characteristics of biological soil crusts in the Tengger Desert[J].Photosynthetica,2018,56(4):1304-1312. |
18 | 陶玲,杜昊霖,张文杰,等.苔藓结皮复配凹凸棒基高吸水性固沙材料的生理特性[J].中国沙漠,2018,38(4):823-828. |
19 | Park C H, Li X R, Jia R L,et al.Combined application of cyanobacteria with soil fixing chemicals for rapid induction of biological soil crust formation[J].Arid Land Research and Management,2017,31(1):81-93. |
20 | Zhao R M, Hui R, Wang Z R,et al.Winter snowfall can have a positive effect on photosynthetic carbon fixation and biomass accumulation of biological soil crusts from the Gurbantunggut Desert,China[J].Ecological Research,2016,31(2):251-262. |
21 | Hui R, Li X R, Chen C Y,et al.Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevated ultraviolet-bradiation[J].Physiologia Plantarum,2013,147(4):489-501. |
22 | Wang W B, Wang Y C, Shu X,et al.Physiological responses of soil crust-forming cyanobacteria to diurnal temperature variation[J].Journal of Basic Microbiology,2013,53(1):72-80. |
23 | Tao L, Ren H R, Ren J.Assessment of cultured media for desert moss crust by physiological responses[J].Journal of Basic Microbiology,2021,61(2):157-164. |
24 | Bu C F, Wang C, Yang Y L,et al.Physiological responses of artificial moss biocrusts to dehydration-rehydration process and heat stress on the Loess Plateau,China[J].Journal of Arid Land,2017,9(3):419-431. |
25 | Szyja M, Büdel B, Colesie C.Ecophysiological characterization of early successional biological soil crusts in heavily human-impacted areas[J].Biogeosciences,2018,15(7):1919-1931. |
26 | Rao B Q, Liu Y D, Lan S B,et al.Effects of sand burial stress on the early developments of cyanobacterial crusts in the field[J].European Journal of Soil Biology,2011,48:48-55. |
27 | Ma G F, Ran F T, Feng E K,et al.Preparation and properties of an organic-inorganic composite superabsorbent based on attapulgite[J].Journal of Composite Materials,2016,50(14):1865-1874. |
28 | Shi S L, Zhang H R, Huang C,et al.Purification of lignocellulose hydrolysate by Org-Attapulgite (Divinyl Benzene-StyreneMethyl acrylate) composite adsorbent[J].Bioresources,2016,11(4):8664-8675. |
29 | 陶玲,曹田,吕莹,等.生物型凹凸棒基高分子固沙材料的复配效果[J].中国沙漠,2017,37(2):276-280. |
30 | Wu Y W, Rao B Q, Wu P P,et al.Development of artificially induced biological soil crusts in fields and their effects on top soil[J].Plant and Soil,2013,370(1/2):115-124. |
31 | 张甜,贾荣亮,高艳红,等.沙坡头人工固沙植被演替过程中主要结皮生物生态位和种间关联变化特征[J].中国沙漠,2021,41(4):100-108. |
32 | 吴丽,陈晓国,张高科,等.人工生物结皮的发育演替及表土持水特性研究[J].环境科学,2014,35(3):1138-1143. |
33 | Wang J, Bao J T, Su J Q,et al.Impact of inorganic nitrogen additions on microbes in biological soil crusts[J].Soil Biology and Biochemistry,2015,88:303-313. |
34 | 黄文福,刘左军,单夕文,等.土壤基质、湿度及接种量对荒漠藻结皮形成的影响[J].中国沙漠,2014,34(6):1503-1508. |
35 | Zhao Y, Li X R, Zhang Z S,et al.Biological soil crusts influence carbon release responses following rainfall in a temperate desert,northern China[J].Ecological Research,2014,29(5):889-896. |
[1] | Yanmei Liu, Hangyu Yang, Fenglian Liu, Junjun Wang, Lihong Wang, Tingting Zhang. Effects of soil bacterial-feeding nematodes on soil enzyme activity under biocrusts in desert areas [J]. Journal of Desert Research, 2022, 42(2): 77-84. |
[2] | Hangyu Yang, Yanmei Liu, Guangyuan Luo, Fenglian Liu. Effects of bacterial-feeding nematodes on soil microbial biomass under biocrusts in desert areas [J]. Journal of Desert Research, 2021, 41(6): 120-125. |
[3] | Tian Zhang, Rongliang Jia, Yanhong Gao, Jingyao Sun, Yun Zhao, Lichao Liu. Niche characteristics and interspecific associations of main biocrust- forming organisms during the succession of artificially sand-binding vegetation in Shapotou, Ningxia, China [J]. Journal of Desert Research, 2021, 41(4): 100-108. |
[4] | Jin Fan, Shiyao Li, Hailong Yu, Juying Huang. Soil enzyme activity and carbon, nitrogen and phosphorus stoichiometric characteristics under different types of biocrusts and subsoil in Mu Us Sandland [J]. Journal of Desert Research, 2021, 41(4): 109-120. |
[5] | Liu Yanmei, Yang Hangyu, Jia Rongliang, Li Yixuan. Effects of Human Trampling Biocrusts on Soil Enzyme Activities [J]. Journal of Desert Research, 2019, 39(4): 54-63. |
[6] | Yang Hangyu, Liu Changzhong, Liu Yanmei, Yang Haotian. Effects of Trampling Biocrusts on Soil Microbial Biomass in Desert Areas [J]. Journal of Desert Research, 2019, 39(2): 35-44. |
[7] | Bao Tianli, Zhao Yunge, Gao Liqian, Shi Yafang. Dynamic of Culturable Microorganisms in Biological Soil Crusts under Trampling Disturbance [J]. Journal of Desert Research, 2019, 39(1): 119-126. |
[8] | Tao Ling, Du Haolin, Zhang Wenjie, Cao Tian, Lv Ying, Ren Jun. Physiological Characteristics of Moss crust Compounded with Superabsorbent Sand-fixation Material Based on Attapulgite [J]. Journal of Desert Research, 2018, 38(4): 823-828. |
[9] | Lai Junhua, Zhang Kai, Wang Weishu, Wang Yankui, Xu Xianlun, Qu Jianjun, Xiao Jianhua. Research Advances and Prospect in Chemical Sand-fixing Materials [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(4): 644-658. |
[10] | Tao Ling, Cao Tian, Lv Ying, Zhang Wenjie, Ren Jun. Function of Biological and Sand-fixation Polymer Material Based on Attapulgite [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(2): 276-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech