Journal of Desert Research ›› 2023, Vol. 43 ›› Issue (2): 243-254.DOI: 10.7522/j.issn.1000-694X.2022.00083
Yu Zhang1(), Qianqian Gou1,2(
), Min Gao1, Yan Zhang1, Wentin Guo1, Guohua Wang1,2,3
Received:
2022-03-21
Revised:
2022-05-20
Online:
2023-03-20
Published:
2023-04-12
Contact:
Qianqian Gou
CLC Number:
Yu Zhang, Qianqian Gou, Min Gao, Yan Zhang, Wentin Guo, Guohua Wang. The response mechanism of early seed regeneration process of Caragana korshinskii bushes with different plantation ages in sandy-hilly region of northwest Shanxi Province[J]. Journal of Desert Research, 2023, 43(2): 243-254.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00083
年限/a | 地理坐标 | 海拔/m | 株高/m | 百粒重/g | 出苗速率/% | 土壤含水量/% | 土壤类型 |
---|---|---|---|---|---|---|---|
7 | 38°58′06″N,111°47′49″E | ||||||
38°57′50″N,111°47′32″E | 1 392 | 131.00±16.46 | 4.36±0.38 | 58.15±1.66 | 10.90 | 黄绵土 | |
38°57′56″N,111°47′48″E | |||||||
13 | 38°46′02″N,111°46′02″E | ||||||
38°58′12″N,111°45′59″E | 1 434 | 139.17±14.58 | 5.11±0.06 | 64.81±1.89 | 14.54 | 黄绵土 | |
38°58′51″N,111°45′24″E | |||||||
19 | 38°58′49″N,111°46′18″E | ||||||
38°58′23″N,111°46′51″E | 1 435 | 147.33±13.67 | 4.61±0.07 | 61.48±1.09 | 12.33 | 黄绵土 | |
38°58′21″N,111°46′50″E | |||||||
51 | 38°58′21″N,111°46′47″E | ||||||
38°58′21″N,111°46′17″E | 1 427 | 231.33±16.69 | 4.07±0.09 | 47.83±1.51 | 9.54 | 黄绵土 | |
38°58′22″N,111°46′48″E |
Table 1 Basic overview of seeds and seed collection sites
年限/a | 地理坐标 | 海拔/m | 株高/m | 百粒重/g | 出苗速率/% | 土壤含水量/% | 土壤类型 |
---|---|---|---|---|---|---|---|
7 | 38°58′06″N,111°47′49″E | ||||||
38°57′50″N,111°47′32″E | 1 392 | 131.00±16.46 | 4.36±0.38 | 58.15±1.66 | 10.90 | 黄绵土 | |
38°57′56″N,111°47′48″E | |||||||
13 | 38°46′02″N,111°46′02″E | ||||||
38°58′12″N,111°45′59″E | 1 434 | 139.17±14.58 | 5.11±0.06 | 64.81±1.89 | 14.54 | 黄绵土 | |
38°58′51″N,111°45′24″E | |||||||
19 | 38°58′49″N,111°46′18″E | ||||||
38°58′23″N,111°46′51″E | 1 435 | 147.33±13.67 | 4.61±0.07 | 61.48±1.09 | 12.33 | 黄绵土 | |
38°58′21″N,111°46′50″E | |||||||
51 | 38°58′21″N,111°46′47″E | ||||||
38°58′21″N,111°46′17″E | 1 427 | 231.33±16.69 | 4.07±0.09 | 47.83±1.51 | 9.54 | 黄绵土 | |
38°58′22″N,111°46′48″E |
Fig.1 Seed emergence rate and mortality of Caragana korshinskii in different ages under drought stress (Different letters indicate the same age plants has significant differences in different drought stress,P<0.05)
Fig.2 Changes of free proline, soluble sugar, malondialdehyde, chlorophyll a, chlorophyll b and chlorophyll in leaves of Caragana korshinskii seedlings in different ages under drought stress (Different letters indicate the same age plants has significant differences in different drought stress,P<0.05)
Fig.3 Changes of plant height, main root length, number of leaves and root-shoot ratio of Caragana korshinskii seedlings in different ages under drought stress (Different letters indicate the same age plants has significant differences in different drought stress,P<0.05)
年限/a | 指标 | 土壤相对含水量 | |||
---|---|---|---|---|---|
70%~75%(适宜) | 55%~60%(轻旱) | 40%~45%(中旱) | 30%~35%(重旱) | ||
7 | 地上生物量/g | 1.31+0.02a | 0.71+0.04b | 0.39+0.03c | 0.22+0.01c |
地下生物量/g | 0.92+0.02a | 0.51+0.02b | 0.38+0.02c | 0.28+0.04c | |
总生物量/g | 2.23+0.05a | 1.22+0.05b | 0.77+0.04c | 0.50+0.05c | |
13 | 地上生物量/g | 1.33+0.04a | 0.73+0.03b | 0.41+0.04c | 0.24+0.01d |
地下生物量/g | 0.94+0.01a | 0.58+0.03b | 0.40+0.03bc | 0.33+0.02c | |
总生物量/g | 2.27+0.03a | 1.31+0.02b | 0.81+0.07bc | 0.57+0.01c | |
19 | 地上生物量/g | 1.31+0.04a | 0.71+0.02b | 0.42+0.00c | 0.23+0.01c |
地下生物量/g | 0.92+0.01a | 0.52+0.03b | 0.39+0.03c | 0.32+0.01c | |
总生物量/g | 2.23+0.03a | 1.23+0.03b | 0.81+0.03c | 0.55+0.00c | |
51 | 地上生物量/g | 1.30+0.02a | 0.68+0.03b | 0.38+0.03c | 0.19+0.00c |
地下生物量/g | 0.90+0.00a | 0.48+0.03b | 0.35+0.02b | 0.25+0.03b | |
总生物量/g | 2.20+0.02a | 1.17+0.06b | 0.74+0.04c | 0.44+0.03d |
Table 2 Biomass characteristics of Caragana korshinskii of different ages under different drought stress
年限/a | 指标 | 土壤相对含水量 | |||
---|---|---|---|---|---|
70%~75%(适宜) | 55%~60%(轻旱) | 40%~45%(中旱) | 30%~35%(重旱) | ||
7 | 地上生物量/g | 1.31+0.02a | 0.71+0.04b | 0.39+0.03c | 0.22+0.01c |
地下生物量/g | 0.92+0.02a | 0.51+0.02b | 0.38+0.02c | 0.28+0.04c | |
总生物量/g | 2.23+0.05a | 1.22+0.05b | 0.77+0.04c | 0.50+0.05c | |
13 | 地上生物量/g | 1.33+0.04a | 0.73+0.03b | 0.41+0.04c | 0.24+0.01d |
地下生物量/g | 0.94+0.01a | 0.58+0.03b | 0.40+0.03bc | 0.33+0.02c | |
总生物量/g | 2.27+0.03a | 1.31+0.02b | 0.81+0.07bc | 0.57+0.01c | |
19 | 地上生物量/g | 1.31+0.04a | 0.71+0.02b | 0.42+0.00c | 0.23+0.01c |
地下生物量/g | 0.92+0.01a | 0.52+0.03b | 0.39+0.03c | 0.32+0.01c | |
总生物量/g | 2.23+0.03a | 1.23+0.03b | 0.81+0.03c | 0.55+0.00c | |
51 | 地上生物量/g | 1.30+0.02a | 0.68+0.03b | 0.38+0.03c | 0.19+0.00c |
地下生物量/g | 0.90+0.00a | 0.48+0.03b | 0.35+0.02b | 0.25+0.03b | |
总生物量/g | 2.20+0.02a | 1.17+0.06b | 0.74+0.04c | 0.44+0.03d |
主成分 | Cl1 | Cl2 | Cl3 |
---|---|---|---|
特征值 | 9.492 | 2.282 | 1.511 |
贡献率/% | 59.323 | 14.260 | 9.433 |
累计贡献率/% | 59.323 | 73.583 | 83.016 |
Table 3 Principal component analysis of various indexes of Caragana korshinskii in different ages
主成分 | Cl1 | Cl2 | Cl3 |
---|---|---|---|
特征值 | 9.492 | 2.282 | 1.511 |
贡献率/% | 59.323 | 14.260 | 9.433 |
累计贡献率/% | 59.323 | 73.583 | 83.016 |
测定指标 | 年限/a | |||||
---|---|---|---|---|---|---|
7 | 13 | 19 | 51 | |||
种子出苗率 | 0.108 | 0.250 | 0.151 | 0.151 | ||
幼苗生理指标 | 渗透调节物质 | 游离脯氨酸 | 0.321 | 0.373 | 0.334 | 0.303 |
可溶性糖 | 0.503 | 0.412 | 0.488 | 0.635 | ||
膜脂过氧化物 | 丙二醛 | 0.677 | 0.657 | 0.644 | 0.697 | |
光合指标 | 叶绿素 | 0.512 | 0.495 | 0.489 | 0.552 | |
叶绿素a | 0.424 | 0.505 | 0.343 | 0.356 | ||
叶绿素b | 0.417 | 0.422 | 0.487 | 0.459 | ||
幼苗生长指标 | 主根长 | 0.574 | 0.392 | 0.486 | 0.537 | |
株高 | 0.532 | 0.504 | 0.557 | 0.444 | ||
叶片数 | 0.605 | 0.960 | 0.964 | 0.409 | ||
地上生物量 | 0.476 | 0.528 | 0.447 | 0.534 | ||
地下生物量 | 0.500 | 0.547 | 0.493 | 0.530 | ||
根冠比 | 0.397 | 0.322 | 0.260 | 0.235 | ||
幼苗死亡率 | 0.149 | 0.192 | 0.150 | 0.149 | ||
隶属函数平均值 | 0.443 | 0.469 | 0.450 | 0.428 | ||
抗旱能力排名 | 3 | 1 | 2 | 4 |
Table 4 Function values of observed indicators of Caragana korshinskii of different ages under drought stress
测定指标 | 年限/a | |||||
---|---|---|---|---|---|---|
7 | 13 | 19 | 51 | |||
种子出苗率 | 0.108 | 0.250 | 0.151 | 0.151 | ||
幼苗生理指标 | 渗透调节物质 | 游离脯氨酸 | 0.321 | 0.373 | 0.334 | 0.303 |
可溶性糖 | 0.503 | 0.412 | 0.488 | 0.635 | ||
膜脂过氧化物 | 丙二醛 | 0.677 | 0.657 | 0.644 | 0.697 | |
光合指标 | 叶绿素 | 0.512 | 0.495 | 0.489 | 0.552 | |
叶绿素a | 0.424 | 0.505 | 0.343 | 0.356 | ||
叶绿素b | 0.417 | 0.422 | 0.487 | 0.459 | ||
幼苗生长指标 | 主根长 | 0.574 | 0.392 | 0.486 | 0.537 | |
株高 | 0.532 | 0.504 | 0.557 | 0.444 | ||
叶片数 | 0.605 | 0.960 | 0.964 | 0.409 | ||
地上生物量 | 0.476 | 0.528 | 0.447 | 0.534 | ||
地下生物量 | 0.500 | 0.547 | 0.493 | 0.530 | ||
根冠比 | 0.397 | 0.322 | 0.260 | 0.235 | ||
幼苗死亡率 | 0.149 | 0.192 | 0.150 | 0.149 | ||
隶属函数平均值 | 0.443 | 0.469 | 0.450 | 0.428 | ||
抗旱能力排名 | 3 | 1 | 2 | 4 |
年限 /a | 指标 | 渗透调节物质 | 丙二醛 | 叶绿素 | |
---|---|---|---|---|---|
游离脯氨酸 | 可溶性糖 | ||||
7 | 株高 | 0.829** | 0.802** | -0.670* | 0.539 |
主根长 | 0.564 | 0.777* | -0.452 | 0.759* | |
叶片数 | 0.426 | 0.766* | -0.711* | 0.836** | |
总生物量 | 0.683* | 0.849** | -0.310 | 0.792* | |
13 | 株高 | 0.818** | 0.743** | -0.749** | 0.538 |
主根长 | 0.917** | 0.824** | -0.414 | 0.892** | |
叶片数 | 0.675* | 0.742* | -0.816** | 0.826** | |
总生物量 | 0.886** | 0.833** | -0.468 | 0.749* | |
19 | 株高 | 0.837** | 0.438 | -0.457 | 0.752* |
主根长 | 0.798* | 0.823** | -0.610* | 0.875** | |
叶片数 | 0.677* | 0.774* | -0.971** | 0.815** | |
总生物量 | 0.596 | 0.463 | -0.379 | 0.636 | |
51 | 株高 | 0.527 | 0.638* | -0.837** | 0.233 |
主根长 | 0.846** | 0.553 | -0.454 | 0.858** | |
叶片数 | 0.795* | 0.485 | -0.443 | 0.673* | |
总生物量 | 0.947** | 0.519 | -0.348 | 0.717* |
Table 5 Correlation analysis of growth and physiological indexes of Caragana korshinskii of different ages
年限 /a | 指标 | 渗透调节物质 | 丙二醛 | 叶绿素 | |
---|---|---|---|---|---|
游离脯氨酸 | 可溶性糖 | ||||
7 | 株高 | 0.829** | 0.802** | -0.670* | 0.539 |
主根长 | 0.564 | 0.777* | -0.452 | 0.759* | |
叶片数 | 0.426 | 0.766* | -0.711* | 0.836** | |
总生物量 | 0.683* | 0.849** | -0.310 | 0.792* | |
13 | 株高 | 0.818** | 0.743** | -0.749** | 0.538 |
主根长 | 0.917** | 0.824** | -0.414 | 0.892** | |
叶片数 | 0.675* | 0.742* | -0.816** | 0.826** | |
总生物量 | 0.886** | 0.833** | -0.468 | 0.749* | |
19 | 株高 | 0.837** | 0.438 | -0.457 | 0.752* |
主根长 | 0.798* | 0.823** | -0.610* | 0.875** | |
叶片数 | 0.677* | 0.774* | -0.971** | 0.815** | |
总生物量 | 0.596 | 0.463 | -0.379 | 0.636 | |
51 | 株高 | 0.527 | 0.638* | -0.837** | 0.233 |
主根长 | 0.846** | 0.553 | -0.454 | 0.858** | |
叶片数 | 0.795* | 0.485 | -0.443 | 0.673* | |
总生物量 | 0.947** | 0.519 | -0.348 | 0.717* |
1 | 李新荣,张志山,黄磊,等.我国沙区人工植被系统生态-水文过程和互馈机理研究评述[J].科学通报,2013,58():397-410. |
2 | 朱震达,刘恕.中国的荒漠化及其治理[M].北京:科学出版社,1989:27-42. |
3 | Wang G, Innes J L, Lei J,et al.China's forestry reforms[J].Science,2007,318(5856):1556-1557. |
4 | 郭惠清.内蒙中部地区小老树成因及改造途径的研究[J].干旱区资源与环境,1997(4):73-80. |
5 | 鲍婧婷,王进,苏洁琼.不同林龄柠条(Caragana korshinskii)的光合特性和水分利用特征[J].中国沙漠,2016,36(1):199-205. |
6 | 史建伟,王孟本,陈建文,等.柠条细根的空间分布特征及其季节动态[J].生态学报,2011,31(3):726-733. |
7 | 于露,周玉蓉,赵亚楠,等.荒漠草原土壤种子库对灌丛引入和降水梯度的响应特征[J].草业学报,2020,29(4):41-50. |
8 | Wu Y P, Hu X W, Wang Y R.Growth, water relations, and stomatal development of Caragana korshinskii Kom. and Zygophyllum xanthoxylum (Bunge) Maxim. seedlings in response to water deficits[J].New Zealand Journal of Agricultural Research,2009,52(2):185-193. |
9 | 姚华,赵晓英,李晓梅,等.四种灌木幼苗对水分胁迫的生理响应[J].生态科学,2009,28(6):537-542. |
10 | 徐当会,方向文,宾振钧,等.柠条适应极端干旱的生理生态机制:叶片脱落和枝条中叶绿体保持完整性[J].中国沙漠,2012,32(3):691-697. |
11 | 杨明秀,宋乃平,杨新国.人工柠条林枝、叶构件生物量的分配格局与估测模型[J].江苏农业科学,2013,41(12):331-333. |
12 | 马占英.平茬对黄土高原人工柠条林土壤碳输入的影响[D].陕西杨凌:西北农林科技大学,2020. |
13 | 牛西午,丁玉川,张强,等.柠条根系发育特征及有关生理特性研究[J].西北植物学报,2003(5):860-865. |
14 | 张帆,陈建文,王孟本.幼龄柠条细根的空间分布和季节动态[J].生态学报,2012,32(17):5484-5493. |
15 | Binkley D, Smith F W, Son Y.Nutrient supply and declines in leaf area and production in lodgepoie pine[J].Canadian Journal of Forest Research,1995,25(4):621-628. |
16 | Schoettle A W.Influence of tree size on shoot structure and physiology of Pinus contorta and Pinus aristata [J].Tree Physiology,1994(7):1055-1068. |
17 | 韩锦涛,李素清,赵德怀,等.晋西北丘陵风沙区人工植物群落优势种种间关系研究[J].干旱区资源与环境,2016,30(12):164-169. |
18 | 王晗生.干旱影响下人工林的天然更新进程[J].干旱区研究,2012,29(5):743-750. |
19 | 朱教君,李智辉,康宏樟,等.聚乙二醇模拟水分胁迫对沙地樟子松种子萌发影响研究[J].应用生态学报,2005,16(5):801-804. |
20 | Walck J L.The ecology of seeds[J].Seed Science Research,2005,15(4):365-366. |
21 | 保长虎,张文辉,何景峰.黄土高原丘陵沟壑区30年柠条人工种群动态研究[J].西北植物学报,2010,30(8):1681-1688. |
22 | 郑明清,郑元润,姜联合.毛乌素沙地4种沙生植物种子萌发及出苗对沙埋及单次供水的响应[J].生态学报,2006,26(8):2474-2484. |
23 | 李茜,任运涛,牛得草,等.几种旱生灌木种子萌发特性及化学成分[J].中国沙漠,2015,35(2):345-351. |
24 | 保长虎.黄土高原丘陵沟壑区柠条人工种群繁殖特征及天然化发育[D].陕西杨凌:西北农林科技大学,2011. |
25 | 杨体强,朱海英,华宏旭,等.电场对柠条(Caragana korshinskii)种子萌发和幼苗抗旱性的影响[J].中国沙漠,2013,33(6):1717-1722. |
26 | 孙毅.宁夏白芨滩自然保护区柠条种群实生更新研究[D].银川:北方民族大学,2016. |
27 | 王孟本,荀俊杰,陈建文,等.晋西北黄土区幼龄柠条细根的净生长速率[J].生态学报,2010,30(5):1117-1124. |
28 | 王国华,宋冰,席璐璐,等.晋西北丘陵风沙区不同林龄人工柠条生长与繁殖动态特征[J].应用生态学报,2021,32(6):2079-2088. |
29 | 刘丙霞,任健,邵明安,等.黄土高原北部人工灌草植被土壤干燥化过程研究[J].生态学报,2020,40(11):3795-3803. |
30 | 梁海斌,史建伟,牛俊杰,等.晋西北黄土丘陵区不同林龄柠条地土壤水分变化特征研究[J].干旱区资源与环境,2014,28(6):143-148. |
31 | Hsiao T C.Plant responses to water stress[J].Annual Review of Plant Physiology,1973,24:519-570. |
32 | 陈春晓,谢秀华,王宇鹏,等.盐分和干旱对沙枣幼苗生理特性的影响[J].生态学报,2019,39(12):4540-4550. |
33 | 张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2009:51-106. |
34 | 郭郁频,米福贵,闫利军,等.不同早熟禾品种对干旱胁迫的生理响应及抗旱性评价[J].草业学报,2014,23(4):220-228. |
35 | 赵小强,陆晏天,白明兴,等.不同株型玉米基因型对干旱胁迫的响应分析[J].草业学报,2020,29(2):149-162. |
36 | 蔺豆豆,赵桂琴,琚泽亮,等.15份燕麦材料苗期抗旱性综合评价[J].草业学报,2021,30(11):108-121. |
37 | 仝倩,施明,贺建勋,等.5种葡萄砧木耐旱性评价及鉴定指标的筛选[J].核农学报,2018,32(9):1814-1820. |
38 | Walck J L, Hidayati S N, Dixon K W,et al.Climate change and plant regeneration from seed[J].Global Change Biology,2011,17(6):2145-2161. |
39 | 刘从,田甜,李珊,等.中国木本植物幼苗生长对光照强度的响应[J].生态学报,2018,38(2):518-527. |
40 | 傅家瑞.种子的活力及其生理生化基础[J].种子,1984(3):3-8. |
41 | 曾彦军,王彦荣,萨仁,等.几种旱生灌木种子萌发对干旱胁迫的响应[J].应用生态学报,2002,13(8):953-956. |
42 | 汤章城.植物干旱生态生理的研究[J].生态学报,1983,3(3):14-22. |
43 | Ashraf M, Foolad M R.Roles of glycine betaine and proline in improving plant abiotic stress resistance[J].Environmental and Experimental Botany,2007,59(2):206-216. |
44 | 李磊,贾志清,朱雅娟,等.我国干旱区植物抗旱机理研究进展[J].中国沙漠,2010,30(5):1053-1059. |
45 | 云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展[J].西北植物学报,2006(3):641-648. |
46 | 张明生,谈锋.水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系[J].种子,2001(4):23-25. |
47 | 裴保华,周宝顺.三种灌木耐旱性研究[J].林业科学研究,1993(6):597-602. |
48 | 薛海霞,李清河,徐军,等.沙埋对唐古特白刺幼苗生长和生物量分配的影响[J].草业科学,2016,33(10):2062-2070. |
49 | 牛存洋,阿拉木萨,宗芹,等.科尔沁沙地小叶锦鸡儿地上-地下生物量分配格局[J].生态学杂志,2013,32(8):1980-1986. |
[1] | Duan Li, Jianhua Si, Jiyan Li, Peijiang Wang, Liming Yuan. Physiological responses and differences of Populus euphratica to salt stress and drought stress [J]. Journal of Desert Research, 2023, 43(2): 205-215. |
[2] | Wei Wang, Yue Wang, Wanrong Li, Haopeng Wang, Ning Yang. Transcriptiomic analysis of drought response genes in Pugionium dolabratum [J]. Journal of Desert Research, 2022, 42(6): 204-210. |
[3] | Yu Wang, Zhenting Liu, Guanglei Gao, fengmei Du, Ying Zhang, Guodong Ding, Yue Ren, Hongyu Cao. Effects of Bacillus subtilis on seed germination, seedling growth of Caragana korshinskii and Ammopiptanthus mongolicus under drought stress [J]. Journal of Desert Research, 2022, 42(5): 73-81. |
[4] | Bing Song, Guohua Wang, Qianqian Gou, Lulu Xi. Effects of sand-buried on annual herbaceous plants in desert-oasis ecotone of Hexi Corridor Gansu, China [J]. Journal of Desert Research, 2021, 41(3): 185-194. |
[5] | Zhang Wenli, Zhu Gong, Huang Wenguang, Zhang Yu, Wang Lei, Luo Xiaoling, Liu Yubing. Physiological response characteristics of Hedysarum multijugum, Clematis fruticosa and Buddleja alternifolia seedlings to drought in semi-arid region of Northwest China [J]. Journal of Desert Research, 2020, 40(3): 159-167. |
[6] | Luo Dandan, Bai Xiaoming, Sun Yanmin, Jin Yanli, Chen Hui, Yuan Yajuan, Li Yujie. Response of Physiological Characteristics and Evaluation of Drought Tolerance for 10 Wild Iris lacteal var. chinensis from Gansu, China [J]. Journal of Desert Research, 2019, 39(5): 210-221. |
[7] | Wang Xiao, Xia Jiangbao, Zhou Dongxing, Zhao Ziguo, Dong Linshui. Photosynthesis Characteristics of Periploca sepium under Drought Stress in Shell-sand Habitat in the Yellow River Delta [J]. Journal of Desert Research, 2019, 39(4): 139-148. |
[8] | Lu Xiang, Wang Ruoyu. Effects of Drought Stress on the Biofilm Formation and Root Colonization Ability of Bacillus amyloliquefaciens FZB42 [J]. Journal of Desert Research, 2019, 39(3): 199-205. |
[9] | Wang Wei, Yang Ning, Zhang Lihuan, Feng Qi. Cloning and Expression Analysis of LIPID TRANSFER PROTEIN 3 Gene under Drought Stress in Pugionium dolabratum [J]. Journal of Desert Research, 2018, 38(3): 578-583. |
[10] | Xu Jun, Chen Hailing, Hao Yuguang, Dong Lilong, Duan Na, Li Shuai, Ma Yingbin, Duan Ruibing, Liu Yuting. Gas Exchange and Drought-resistant Physiological Characteristics of Nitraria billardier Provenances in Ulan Buh Desert [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(5): 917-924. |
[11] | Liu Dan, Liu Yubing, Zhang Wenli. Gene Transcriptional Expression in Reaumuria soongorica under Combined Stress of Drought and UV-B Radiation [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(4): 705-713. |
[12] | Tao Ling, Cao Tian, Lv Ying, Zhang Wenjie, Ren Jun. Function of Biological and Sand-fixation Polymer Material Based on Attapulgite [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(2): 276-280. |
[13] | Zhang Xiao, Wang Xu, Jiao Peipei, Li Zhijun. Response of Seed Germination and Embryo Growth to Salt Stress and Drought Stress of Populus euphratica [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(6): 1597-1605. |
[14] | Ma Yang, Wang Xueqin, Han Zhangyong, Liu Jinhui. Effect of Wind Erosion and Sand Burial on Physiological Characters in Alhagi sparsifolia and Karelinia caspica Seedlings in the Southern Margin of the Taklimakan Desert [J]. JOURNAL OF DESERT RESEARCH, 2015, 35(5): 1254-1261. |
[15] | Yu Ling, Ma Huiling. The Endogenous Hormone Level and Drought Adaptability of Four Kentucky Bluegrass Species in Gansu, China [J]. JOURNAL OF DESERT RESEARCH, 2015, 35(1): 182-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech