Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (4): 67-74.DOI: 10.7522/j.issn.1000-694X.2025.00096
Previous Articles Next Articles
Shuxia Yao1,2(), Tonghui Zhang2(
), Chuancheng Zhao1,2
Received:
2025-05-19
Revised:
2025-06-26
Online:
2025-07-20
Published:
2025-08-18
Contact:
Tonghui Zhang
CLC Number:
Shuxia Yao, Tonghui Zhang, Chuancheng Zhao. Time series analysis of soil moisture in sandy grassland of Horqin Sandy Land[J]. Journal of Desert Research, 2025, 45(4): 67-74.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00096
土层深度/cm | 容重/(g·cm-3) | 有机质含量/(g·kg-1) | 土壤粒级分布/% | ||
---|---|---|---|---|---|
2~0.1 mm | 0.1~0.05 mm | <0.05 mm | |||
0~20 | 1.61 | 3.19 | 49.13 | 35.14 | 14.21 |
20~40 | 1.58 | 2.73 | 30.35 | 49.13 | 18.69 |
40~60 | 1.53 | 3.41 | 20.19 | 45.10 | 32.97 |
60~80 | 1.51 | 3.30 | 13.98 | 40.81 | 43.32 |
80~100 | 1.53 | 3.41 | 7.98 | 48.08 | 42.53 |
100~120 | 1.55 | 3.25 | 6.35 | 48.69 | 43.26 |
120~140 | 1.56 | 3.12 | 5.54 | 48.15 | 44.57 |
Table 1 Soil physical and chemical properties of the site
土层深度/cm | 容重/(g·cm-3) | 有机质含量/(g·kg-1) | 土壤粒级分布/% | ||
---|---|---|---|---|---|
2~0.1 mm | 0.1~0.05 mm | <0.05 mm | |||
0~20 | 1.61 | 3.19 | 49.13 | 35.14 | 14.21 |
20~40 | 1.58 | 2.73 | 30.35 | 49.13 | 18.69 |
40~60 | 1.53 | 3.41 | 20.19 | 45.10 | 32.97 |
60~80 | 1.51 | 3.30 | 13.98 | 40.81 | 43.32 |
80~100 | 1.53 | 3.41 | 7.98 | 48.08 | 42.53 |
100~120 | 1.55 | 3.25 | 6.35 | 48.69 | 43.26 |
120~140 | 1.56 | 3.12 | 5.54 | 48.15 | 44.57 |
土层深度 /cm | 统计指标(n=45) | ||||
---|---|---|---|---|---|
最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | |
0~20 | 1.17 | 19.19 | 6.44 | 4.74 | 0.74 |
20~40 | 3.52 | 20.32 | 8.98 | 4.99 | 0.56 |
40~60 | 4.34 | 24.10 | 11.03 | 4.87 | 0.44 |
60~80 | 6.05 | 21.87 | 10.88 | 4.35 | 0.40 |
80~100 | 5.41 | 18.92 | 9.22 | 3.47 | 0.38 |
100~120 | 5.00 | 13.31 | 7.50 | 2.19 | 0.29 |
120~140 | 5.90 | 12.97 | 7.51 | 1.90 | 0.25 |
Table 2 Statistical characteristics of soil moisture
土层深度 /cm | 统计指标(n=45) | ||||
---|---|---|---|---|---|
最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | |
0~20 | 1.17 | 19.19 | 6.44 | 4.74 | 0.74 |
20~40 | 3.52 | 20.32 | 8.98 | 4.99 | 0.56 |
40~60 | 4.34 | 24.10 | 11.03 | 4.87 | 0.44 |
60~80 | 6.05 | 21.87 | 10.88 | 4.35 | 0.40 |
80~100 | 5.41 | 18.92 | 9.22 | 3.47 | 0.38 |
100~120 | 5.00 | 13.31 | 7.50 | 2.19 | 0.29 |
120~140 | 5.90 | 12.97 | 7.51 | 1.90 | 0.25 |
滞后时距(10 d) | 土层深度/cm | ||||||
---|---|---|---|---|---|---|---|
0~20 | 20~40 | 40~60 | 60~80 | 80~100 | 100~120 | 120~140 | |
k=1 | -0.128 | -0.213* | -0.104 | 0.263* | 0.396* | 0.244* | 0.351* |
k=2 | -0.243* | -0.156 | -0.177 | 0.166 | 0.127 | 0.148 | 0.049 |
k=3 | -0.044 | -0.147 | -0.108 | -0.223* | -0.224* | -0.158 | -0.105 |
k=4 | -0.067 | 0.036 | 0.064 | -0.225* | -0.210* | -0.109 | -0.176 |
k=5 | -0.034 | -0.089 | -0.011 | -0.194 | -0.158 | -0.090 | -0.125 |
k=6 | 0.059 | 0.015 | -0.058 | -0.139 | -0.142 | -0.098 | -0.143 |
Table 3 Auto-interrelation coefficients of soil moisture in different soil layer with different lag period
滞后时距(10 d) | 土层深度/cm | ||||||
---|---|---|---|---|---|---|---|
0~20 | 20~40 | 40~60 | 60~80 | 80~100 | 100~120 | 120~140 | |
k=1 | -0.128 | -0.213* | -0.104 | 0.263* | 0.396* | 0.244* | 0.351* |
k=2 | -0.243* | -0.156 | -0.177 | 0.166 | 0.127 | 0.148 | 0.049 |
k=3 | -0.044 | -0.147 | -0.108 | -0.223* | -0.224* | -0.158 | -0.105 |
k=4 | -0.067 | 0.036 | 0.064 | -0.225* | -0.210* | -0.109 | -0.176 |
k=5 | -0.034 | -0.089 | -0.011 | -0.194 | -0.158 | -0.090 | -0.125 |
k=6 | 0.059 | 0.015 | -0.058 | -0.139 | -0.142 | -0.098 | -0.143 |
气象因子 | 滞后时距(10 d) | |||||
---|---|---|---|---|---|---|
k=1 | k=2 | k=3 | k=4 | k=5 | k=6 | |
降水量/mm | -0.143 | -0.113 | -0.195 | 0.169 | 0.164 | -0.029 |
蒸发量/mm | -0.109 | -0.114 | -0.119 | 0.024 | 0.196 | -0.031 |
Table 4 Auto-interrelation coefficients of cumulative precipitation and evaporation at the different lag period
气象因子 | 滞后时距(10 d) | |||||
---|---|---|---|---|---|---|
k=1 | k=2 | k=3 | k=4 | k=5 | k=6 | |
降水量/mm | -0.143 | -0.113 | -0.195 | 0.169 | 0.164 | -0.029 |
蒸发量/mm | -0.109 | -0.114 | -0.119 | 0.024 | 0.196 | -0.031 |
滞后时距 (10 d) | 土层深度/cm | ||||||
---|---|---|---|---|---|---|---|
0~20 | 20~40 | 40~60 | 60~80 | 80~100 | 100~120 | 120~140 | |
k=0 | 0.643** | 0.603** | 0.530** | 0.131 | 0.103 | 0.102 | 0.103 |
k=1 | 0.224* | 0.320* | 0.273* | 0.113 | 0.147 | -0.184 | -0.122 |
k=2 | -0.208* | -0.231* | -0.207* | 0.034 | 0.044 | 0.090 | 0.016 |
k=3 | -0.095 | -0.175 | -0.120 | -0.182 | -0.151 | 0.004 | 0.073 |
k=4 | 0.040 | 0.107 | 0.091 | 0.106 | 0.010 | -0.133 | -0.079 |
k=5 | 0.094 | 0.108 | 0.100 | 0.101 | 0.019 | 0.084 | 0.029 |
Table 5 Cross-correlation coefficients between cumulative precipitation and soil moisture at the different lag period
滞后时距 (10 d) | 土层深度/cm | ||||||
---|---|---|---|---|---|---|---|
0~20 | 20~40 | 40~60 | 60~80 | 80~100 | 100~120 | 120~140 | |
k=0 | 0.643** | 0.603** | 0.530** | 0.131 | 0.103 | 0.102 | 0.103 |
k=1 | 0.224* | 0.320* | 0.273* | 0.113 | 0.147 | -0.184 | -0.122 |
k=2 | -0.208* | -0.231* | -0.207* | 0.034 | 0.044 | 0.090 | 0.016 |
k=3 | -0.095 | -0.175 | -0.120 | -0.182 | -0.151 | 0.004 | 0.073 |
k=4 | 0.040 | 0.107 | 0.091 | 0.106 | 0.010 | -0.133 | -0.079 |
k=5 | 0.094 | 0.108 | 0.100 | 0.101 | 0.019 | 0.084 | 0.029 |
滞后时距 (10 d ) | 土层深度/cm | ||||||
---|---|---|---|---|---|---|---|
0~20 | 20~40 | 40~60 | 60~80 | 80~100 | 100~120 | 120~140 | |
k=0 | -0.300* | -0.255* | -0.229* | -0.154 | 0.005 | 0.150 | 0.130 |
k=1 | -0.292* | 0.120 | 0.062 | 0.278* | 0.109 | 0.066 | 0.092 |
k=2 | 0.286* | 0.241* | 0.148 | 0.057 | 0.157 | 0.039 | 0.062 |
k=3 | 0.092 | -0.096 | -0.031 | 0.011 | 0.140 | 0.124 | -0.023 |
k=4 | 0.183 | -0.191 | -0.137 | -0.137 | -0.109 | 0.064 | -0.009 |
k=5 | -0.146 | -0.013 | -0.064 | -0.158 | -0.128 | -0.105 | -0.038 |
Table 6 Cross-correlation between cumulative evaporation and soil moisture at the different lag period
滞后时距 (10 d ) | 土层深度/cm | ||||||
---|---|---|---|---|---|---|---|
0~20 | 20~40 | 40~60 | 60~80 | 80~100 | 100~120 | 120~140 | |
k=0 | -0.300* | -0.255* | -0.229* | -0.154 | 0.005 | 0.150 | 0.130 |
k=1 | -0.292* | 0.120 | 0.062 | 0.278* | 0.109 | 0.066 | 0.092 |
k=2 | 0.286* | 0.241* | 0.148 | 0.057 | 0.157 | 0.039 | 0.062 |
k=3 | 0.092 | -0.096 | -0.031 | 0.011 | 0.140 | 0.124 | -0.023 |
k=4 | 0.183 | -0.191 | -0.137 | -0.137 | -0.109 | 0.064 | -0.009 |
k=5 | -0.146 | -0.013 | -0.064 | -0.158 | -0.128 | -0.105 | -0.038 |
[1] | 郑曼迪,刘忠,许昭辉,等.基于微波遥感的土壤水分反演估算研究进展[J].土壤学报,2024,61(1):16-28. |
[2] | Xu L, Lv Y, Moradkhani H.Daily multistep soil moisture forecasting by combining linear and nonlinear causality and attention-based encoder-decoder model[J].Stochastic Environmental Research & Risk Assessment,2024,38(12):4979-5000. |
[3] | Yang L.Time series analysis and temporal stability of shallow soil moisture in a high-fill slope of the loess plateau,China[J].Water,2025,17:1-19. |
[4] | Gao Y X, Leng P, Li J,et al.Identification of irrigation events using Bayesian statistics-based change detection and soil moisture measurements[J].Agricultural Water Management,2024,302:1-15. |
[5] | 胡广录,刘鹏,李嘉楠,等.黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J].干旱区研究,2024,41(4):550-565. |
[6] | 郝需婷,黄雅茹,马迎宾,等.乌兰布和沙漠固沙梭梭林生长季土壤水分动态研究[J].中国农业科技导报,2023,25(7):187-196. |
[7] | 杨竹青,王磊,张雪,等.典型固沙植物种子萌发和幼苗生长对土壤水分的响应[J].干旱区研究,2024,41(5):830-842. |
[8] | 徐莹,关晋宏,邓磊.高寒半干旱区沙地植被土壤水分变化特征及其影响因素[J].生态学报,2024,44(13):1-13. |
[9] | Chen L, Hu B, Sun J,et al.Using remote sensing and machine learning to generate 100 cm soil moisture at 30-m resolution for the black soil region of China: implication for agricultural water management[J].Agricultural Water Management,2025,309:1-13. |
[10] | Rasche D, Blume T, Güntner A.Depth extrapolation of field-scale soil moisture time series derived with cosmic-ray neutron sensing (CRNS) using the soil moisture analytical relationship (土壤水分AR) model[J].Soil,2024,10(2):1-49. |
[11] | 郑涵,牛盼盼,金钊,等.延安顾屯流域沟道新造耕地土壤水分动态对不同降雨年型降雨的响应[J].地球环境学报,2024,37(4):227-234. |
[12] | 张帆,辛智鸣,杨文斌,等.毛乌素沙地典型植被对地下水循环过程的调控[J].中国沙漠,2025,45(1):63-74. |
[13] | 祖姆热提·于苏甫江,董正武,成鹏,等.多枝柽柳水分利用策略对沙堆堆积过程的响应[J].植物生态学报,2024,48(1):113-126. |
[14] | Zhang J H, Wang N A, Niu Z M, et al. Stable isotope analysis of water sources for Tamarix laxa in the mega-dunes of the Badain Jaran Desert, China[J].Journal of Arid Land,2018,10:821-832. |
[15] | 刘俊壕,周海盛,郭群.中国北方干旱半干旱区沙漠化治理对植被格局的影响[J].中国沙漠,2023,43(5):204-213. |
[16] | 张铁军.腾格里沙漠东北缘飞播植物群落土壤水分特征研究[D].呼和浩特:内蒙古农业大学,2023. |
[17] | 吉吉佳门,程一本,谌玲珑,等.科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J].干旱区研究,2023, 40(5):756-766. |
[18] | Zhang Z S, Xu B X, Zhao Y,et a1.Long-term water balance variation after revegetation on the southeastern edge of the Tengger Desert[J].Ecological Indicators,202l,13l:1-9. |
[19] | Cheng Y B, Zhan H B, Yang W B,et al.An ecohydrological perspective of reconsented vegetation in the semi-arid region in drought seasons[J].Agricultural Water Management,202l,243:1-9. |
[20] | 张日升,凡胜豪,姜涛,等.辽西北风沙区典型利用类型下的土壤水分变化特征[J].安徽农业科学,2024,52(23):62-64. |
[21] | 王志军.非线性分形理论与时间序列分析法在土壤含水量预测中的应用研究[D].西安:长安大学,2016. |
[22] | Yao S, Zhao C.Application of time series analysis in soil moisture of fixed dune on Korqin Sandy Land,Northern China[J].Global Nest Journal,2020,22(4):471-476. |
[23] | Fay P A, Blair J M, Smith M D,et al.Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function[J].Biogeosciences,2011,8(10):3053-3068. |
[24] | IPCC.Climate Change 2021:the physical science basis[R].Cambridge,UK:Cambridge University Press,2021. |
[25] | 王晓燕,陈洪松,王克林,等.红壤坡地土壤水分时间序列分析[J].应用生态学报,2007,18(2):297-302. |
[26] | 王贺年,余新晓.北京山区林地土壤水分时间序列分析[J].山地学报,2012,30(5):550-554. |
[27] | Wang T, Wedin D A, Franz T E,et al.Effect of vegetation on the temporal stability of soil moisture in grass-stabilized semi-arid sand dunes[J].Journal of Hydrology,2015,521:447-459. |
[28] | 卢建男,李玉强,赵学勇,等.半干旱区典型沙地生态环境演变特征及沙漠化防治建议[J].中国沙漠,2024,44(4):284-292. |
[29] | 詹瑾,丛安琪,李玉霖,等.长期氮沉降和地上凋落物处理对半干旱区沙质草地表层土壤碳氮组分的影响[J].水土保持学报,2023,37(4):227-234. |
[30] | 秦华光,李家才,穆丹,等.时间序列自回归模型预测茶园小绿叶蝉种群动态的探讨[J].安徽农业大学学报,2008,35(4):564-570. |
[31] | 李庆雷,马楠,付遵涛.时间序列非平稳检测方法的对比分析[J].北京大学学报(自然科学版),2013,49(2):252-260. |
[32] | 石辉,刘世荣,孙鹏森,等.黄土丘陵区人工油松林地土壤水分动态的时间序列分析[J].山地学报,2004,22(4):411-414. |
[33] | 白冬妹,郭满才,郭忠升,等.时间序列自回归模型在土壤水分预测中的应用研究[J].中国水土保持,2014,2(2):42-42. |
[34] | 刘苑秋,王红胜,郭圣茂,等.江西省退化石灰岩红壤区重建森林土壤水分与降水量和蒸发量的关系[J].应用生态学报,2008,19(12):2588-2592. |
[1] | Bo Yao, Jie Lian, Xiangwen Gong, Xiaoming Mou, Yulin Li, Yuqiang Li, Xuyang Wang. Spatial patterns and influencing factors of soil microbial carbon, nitrogen and phosphorus stoichiometry in Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 153-165. |
[2] | Jianpeng Zhang, Luming Lei, Yuqiang Li, Tianai Li, Xueyong Zhao, Haotong Ren, Hong Jia, Yangyang Wang, Lihan Cui. Sustainability assessment of human-earth systems from ecosystem service supply-demand perspectives: evidence from Horqin Sandy Land, China [J]. Journal of Desert Research, 2025, 45(4): 176-189. |
[3] | Zhiying Ning, Yulin Li, Xueyong Zhao, Yanjun Zhang, Haibing Wang, Min Yan, Ruimin Liu, Heju Zuo. Effects litter decomposition characteristics of dominant plants on soil microbial community in Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 190-199. |
[4] | Wanhong Su, Jin Zhan, Ya Li, Yongfu Ji, Yulin Li, Anqi Cong, Wen Zhang, Guiquan Fu, Yuejun Wang. Effects of litter removal on top soil carbon components in the sandy grassland [J]. Journal of Desert Research, 2025, 45(4): 200-210. |
[5] | Delong Zhou, Yongfang Wang, Enliang Guo, Ying Hong, Haowen Ma, Quanfei Mu, Yanli Wang. Evolution and prediction of habitat quality in the Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 211-226. |
[6] | Huilin Zhang, Weiguo Wang, Yilan Bo, Zizhen Jin. Spatiotemporal dynamics of wind erosion prevention and sand fixation service in the Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 227-240. |
[7] | Weichun Liu, Yulin Li, Li Cheng, Haifu Fang. The impact of protective tillage on wind erosion of farmland in the Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 24-33. |
[8] | Ning Wang, Anqi Cong, Xueping Chen, Xinping Liu. The characteristics of farmland area changes and dust source control in the Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 253-261. |
[9] | Wenjie Cao, Yun Chen, Yuqiang Li, Xuyang Wang, Xiangwen Gong, Zichen Guo. Impact of long-term enclosure of severely desertified grasslands on plant communities in the Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 262-271. |
[10] | Haifu Fang, Yulin Li, Yanqing Li, Yuyin Mo, Jin Zhan, Zhijia Luo. Changes in landscape patterns and their driving factors of the typical dune alternated with meadow area in the Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 285-294. |
[11] | Haojiang Bai, Yongqing Luo, Li Cheng, Zhengjiaoyi Wang. The phenological responses of the dominant shrubs Artemisia halodendron and Caragana microphylla in the Horqin Sandy Land to climate change [J]. Journal of Desert Research, 2025, 45(4): 305-313. |
[12] | Mi Xia, Yayong Luo, Xinyu Zhao, Hesong Wang, Binghao Chen, Canyu Shi. The impact of extreme drought on soil respiration in Caragana microphylla habitats in the Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 334-342. |
[13] | Shangbin Shi, Wenda Huang, Hailun Yu, Jing Feng, Yuanzhong Zhu. Differential gene expression response to warming of typical plants in the Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 343-356. |
[14] | Yalin Wu, Xueyong Zhao, Rui Zhang. Characteristics of soil organic carbon and nitrogen density in three plant communities of sandy grasslands [J]. Journal of Desert Research, 2025, 45(4): 357-367. |
[15] | Jiaqi Jing, Xinping Liu, Yuhui He, Jie Feng, Hongjiao Hu, Yuanzhi Xu, Yao Zhang. Influence of precipitation on soil enzyme activity in sandy grasslands [J]. Journal of Desert Research, 2025, 45(4): 368-377. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech