Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (1): 151-161.DOI: 10.7522/j.issn.1000-694X.2024.00089
Yuqian Li1,2(), Xuyang Wang1,2(
), Hongdong Lin3, Xiaoming Mou1,2, Weiyuan Liu4, Jie Lian1,2, Yuqiang Li1,2
Received:
2024-08-28
Revised:
2024-09-24
Online:
2025-01-20
Published:
2025-01-13
Contact:
Xuyang Wang
CLC Number:
Yuqian Li, Xuyang Wang, Hongdong Lin, Xiaoming Mou, Weiyuan Liu, Jie Lian, Yuqiang Li. Effects of altitude gradient on soil microbial carbon, nitrogen and phosphorus stoichiometric characteristics in Maxian Mountain ecosystem[J]. Journal of Desert Research, 2025, 45(1): 151-161.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2024.00089
样地名称 | 海拔/m | 植被类型 | 优势植物 |
---|---|---|---|
AM | 3 500~3 670 | 高山草甸 | 高原嵩草(Carex coninux),矮嵩草(Kobresia humilis) |
AS | 3 100~3 500 | 高山灌丛 | 金露梅(Potentilla fruticose),多裂委陵菜(Potentilla multifida),马先蒿( |
SS | 2 900~3 100 | 亚高山灌丛 | 沙棘(Hippophae rhamnoides),杜鹃(Rhododendron simsii),坡柳(Salix myrtillacea) |
AG | 2 600~2 900 | 高山草原 | 野蒿(Erigeron annuus),西北针茅(Stipa sareptana),冰草(Agropyron cristatum) |
Table 1 The basic information of different sites
样地名称 | 海拔/m | 植被类型 | 优势植物 |
---|---|---|---|
AM | 3 500~3 670 | 高山草甸 | 高原嵩草(Carex coninux),矮嵩草(Kobresia humilis) |
AS | 3 100~3 500 | 高山灌丛 | 金露梅(Potentilla fruticose),多裂委陵菜(Potentilla multifida),马先蒿( |
SS | 2 900~3 100 | 亚高山灌丛 | 沙棘(Hippophae rhamnoides),杜鹃(Rhododendron simsii),坡柳(Salix myrtillacea) |
AG | 2 600~2 900 | 高山草原 | 野蒿(Erigeron annuus),西北针茅(Stipa sareptana),冰草(Agropyron cristatum) |
因子 | 高山草原(AG) | 亚高山灌丛(SS) | 高山灌丛(AS) | 高山草甸(AM) | |
---|---|---|---|---|---|
温度/℃ | 0~20 cm | 29.37±6.30a | 22.88±1.09b | 20.07±2.44b | 18.30±4.90b |
20~40 cm | 29.25±6.30a | 22.67±1.01b | 19.78±2.51b | 17.75±4.53b | |
地下生物量/g | 0~20 cm | 18.15±7.62a | 12.46±5.88a | 20.86±6.89a | 44.13±56.48a |
20~40 cm | 4.33±2.24a | 4.55±4.53a | 7.02±7.24a | 7.83±16.89a | |
容重/(g·cm-3) | 0~20 cm | 2.19±0.33a | 1.49±0.57bc | 1.16±0.16c | 1.83±0.36ab |
20~40 cm | 2.71±0.46a | 1.98±0.66b | 1.61±0.31b | 2.03±0.19b | |
含水率/% | 0~20 cm | 9.37±4.48b | 36.12±24.91a | 48.76±13.92a | 51.54±6.74a |
20~40 cm | 6.86±1.11c | 26.54±16.10b | 40.39±9.38ab | 43.17±14.71a | |
pH | 0~20 cm | 8.12±0.06a | 7.11±0.21b | 6.78±0.11c | 6.08±0.15d |
20~40 cm | 8.30±0.05a | 7.34±0.29b | 6.88±0.09c | 6.29±0.07d | |
电导率/(S·m-1) | 0~20 cm | 115.42±5.22a | 83.42±17.53b | 93.80±14.27b | 114.92±17.88a |
20~40 cm | 126.98±12.65a | 73.82±13.58b | 72.18±14.25b | 63.87±12.18b | |
砂粒(w/w)/% | 0~20 cm | 14.78±4.08ab | 8.10±1.92b | 8.62±3.81b | 18.22±10.50a |
20~40 cm | 14.32±4.86a | 6.53±2.28b | 8.73±4.88b | 8.20±4.92b | |
黏粉粒(w/w)/% | 0~20 cm | 85.22±4.08ab | 91.90±1.92a | 91.38±3.81a | 81.78±10.50b |
20~40 cm | 85.68±4.86b | 93.47±2.28a | 91.27±4.88ab | 91.80±4.92a |
Table 2 Basic physical and chemical properties of soil at different elevations
因子 | 高山草原(AG) | 亚高山灌丛(SS) | 高山灌丛(AS) | 高山草甸(AM) | |
---|---|---|---|---|---|
温度/℃ | 0~20 cm | 29.37±6.30a | 22.88±1.09b | 20.07±2.44b | 18.30±4.90b |
20~40 cm | 29.25±6.30a | 22.67±1.01b | 19.78±2.51b | 17.75±4.53b | |
地下生物量/g | 0~20 cm | 18.15±7.62a | 12.46±5.88a | 20.86±6.89a | 44.13±56.48a |
20~40 cm | 4.33±2.24a | 4.55±4.53a | 7.02±7.24a | 7.83±16.89a | |
容重/(g·cm-3) | 0~20 cm | 2.19±0.33a | 1.49±0.57bc | 1.16±0.16c | 1.83±0.36ab |
20~40 cm | 2.71±0.46a | 1.98±0.66b | 1.61±0.31b | 2.03±0.19b | |
含水率/% | 0~20 cm | 9.37±4.48b | 36.12±24.91a | 48.76±13.92a | 51.54±6.74a |
20~40 cm | 6.86±1.11c | 26.54±16.10b | 40.39±9.38ab | 43.17±14.71a | |
pH | 0~20 cm | 8.12±0.06a | 7.11±0.21b | 6.78±0.11c | 6.08±0.15d |
20~40 cm | 8.30±0.05a | 7.34±0.29b | 6.88±0.09c | 6.29±0.07d | |
电导率/(S·m-1) | 0~20 cm | 115.42±5.22a | 83.42±17.53b | 93.80±14.27b | 114.92±17.88a |
20~40 cm | 126.98±12.65a | 73.82±13.58b | 72.18±14.25b | 63.87±12.18b | |
砂粒(w/w)/% | 0~20 cm | 14.78±4.08ab | 8.10±1.92b | 8.62±3.81b | 18.22±10.50a |
20~40 cm | 14.32±4.86a | 6.53±2.28b | 8.73±4.88b | 8.20±4.92b | |
黏粉粒(w/w)/% | 0~20 cm | 85.22±4.08ab | 91.90±1.92a | 91.38±3.81a | 81.78±10.50b |
20~40 cm | 85.68±4.86b | 93.47±2.28a | 91.27±4.88ab | 91.80±4.92a |
1 | Elser J J, Acharya K, Kyle M,et al.Growth rate-stoichiometry couplings in diverse biota[J].Ecology Letters,2003,6:936-943. |
2 | Elser J J, Sterner R W, Gorokhova E,et al.Biological stoichiometry from genes to ecosystems[J].Ecology Letters,2000,3(6):540-550. |
3 | Michaels A F.The ratios of life[J].Science,2003,300(5621):906-907. |
4 | 王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947. |
5 | Rogers B F, Tate R L.Temporal analysis of the soil microbial community along a top sequence in pineland soils[J].Soil Biology and Biochemistry,2001,33:1389-1401. |
6 | 魏媛,张金池,喻理飞.退化喀斯特植被恢复过程中土壤微生物量碳的变化[J].南京林业大学学报(自然科学版),2008,32(5):71-75. |
7 | 王慧颖,徐明岗,马想,等.长期施肥下我国农田土壤微生物及氨氧化菌研究进展[J].中国土壤与肥料,2018(2):1-12. |
8 | 王宁,杨雪,李世兰,等.不同海拔红松混交林土壤微生物量碳、氮的生长季动态[J].林业科学,2016,52(1):150-158. |
9 | 李聪,吕晶花,陆梅,等.文山国家级自然保护区不同海拔地带性植被的土壤微生物生物量碳氮分布特征[J].林业科学,2022,58(3):20-30. |
10 | Kou Y P, Li C N, Tu B,et al.The responses of ammonia-oxidizing microorganisms to different environmental factors determine their elevational distribution and assembly patterns[J].Microbial Ecology,2022,86(1):485-496. |
11 | Yang Y, Qiu K Y, Xie Y Z,et al.Geographical,climatic,and soil factors control the altitudinal pattern of rhizosphere microbial diversity and its driving effect on root zone soil multifunctionality in mountain ecosystems[J].The Science of the Total Environment,2023,904:166932. |
12 | Mccain C M.Could temperature and water availability drive elevational species richness patterns?a global case study for bats[J].Global Ecology and Biogeography,2007,16(1):1-13. |
13 | Xu X F, Thornton Peter E, Post W M.A global analysis of soil microbial biomass carbon,nitrogen and phosphorus in terrestrial ecosystems[J].Global Ecology and Biogeography,2013,22(5/6):737-749. |
14 | 陈顺治.关帝山华北落叶松林下植物多样性和土壤碳氮磷的海拔梯度格局[D].山西太谷:山西农业大学,2016. |
15 | 刘倩,王书丽,邓邦良,等.武功山山地草甸不同海拔凋落物-土壤碳、氮、磷含量及其生态化学计量特征[J].应用生态学报,2018,29(5):1535-1541. |
16 | 宁朋,程小毛,杨晓锋,等.贡嘎山不同海拔峨眉冷杉根际土壤化学性质及胞外酶活性[J].应用与环境生物学报,2021,27(5):1138-1146. |
17 | 张彦军,郁耀闯,牛俊杰,等.秦岭太白山北坡土壤有机碳储量的海拔梯度格局[J].生态学报,2020,40(2):629-639. |
18 | 吴昊,邹梦茹,王思芊,等.秦岭松栎林土壤生态化学计量特征及其对海拔梯度的响应[J].生态环境学报,2019,28(12):2323-2331. |
19 | 李丹维,王紫泉,田海霞,等.太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J].土壤学报,2017,54(1):160-170. |
20 | Nottingham A T, Turner B L, Whitaker J,et al.Soil microbial nutrient constraints along a tropical forest elevation gradient:a belowground test of a biogeochemical paradigm[J].Biogeosciences,2015,12:6071-6083. |
21 | 贾培龙,安韶山,李程程,等.黄土高原森林带土壤养分和微生物量及其生态化学计量变化特征[J].水土保持学报,2020,34(1):315-321. |
22 | 刘秉儒.贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征[J].生态环境学报,2010,19(4):883-888. |
23 | Arunachalam A, Pandey H N.Ecosystem restoration of jhum fallows in northeast India:microbial C and N along altitudinal and successional gradients[J].Restoration Ecology,2003,11(2):168-173. |
24 | 丛静,刘晓,卢慧,等.神农架自然保护区土壤微生物生物量碳、氮沿海拔梯度的变化及其影响因素[J].生态学杂志,2014,33(12):3381-3387. |
25 | 陈婕妮,石思雨,钟羡芳,等.武夷山不同海拔土壤微生物生物量碳、氮、磷含量及其生态化学计量特征[J].生态学杂志,2023(3):1-8. |
26 | Manral V, Bargali K, Bargali S S.Seasonal dynamics of soil microbial biomass C,N and P along an altitudinal gradient in Central Himalaya,India[J].Sustainability,2023,15(2):1651. |
27 | Chen Y L, Chen L Y, Peng Y F,et al.Linking microbial C∶N∶P stoichiometry to microbial community and abiotic factors along a 3500‐km grassland transect on the Tibetan Plateau[J].Biogeography,2016,25(12):1416-1427. |
28 | 李树德.兰州马衔山发现多年冻土[J].冰川冻土,1986,8(4):409-410. |
29 | 董希成,谢昌卫,赵林,等.兰州马衔山多年冻土区地表能量平衡特征分析[J].冰川冻土,2013,35(2):320-326. |
30 | 谢昌卫,赵林,吴吉春,等.兰州马衔山多年冻土特征及变化趋势分析[J].冰川冻土,2010,32(5):883-890. |
31 | 孙国钧,赵松岭.甘肃省马衔山地区植被特征分析[J].西北植物报,1995,15(5):115-120. |
32 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000. |
33 | 黄伟佳,刘春,刘岳,等.南岭山地不同海拔土壤生态化学计量特征及影响因素[J].生态环境学报,2023,32(1):80-89. |
34 | Bhople P, Djukic I, Keiblinger K,et al.Variations in soil and microbial biomass C,N and fungal biomass ergosterol along elevation and depth gradients in Alpine ecosystems[J].Geoderma,2019,345:93-103. |
35 | He X J, Hou E Q, Liu Y,et al.Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China[J].Scientific Reports,2016,6(1):24261. |
36 | Zhang A L, Li X Y, Wu S X,et al.Spatial pattern of C∶N∶P stoichiometry characteristics of alpine grassland in the Altunshan Nature Reserve at North Qinghai-Tibet Plateau[J].Catena,2021,207:105691. |
37 | 朱秋莲,邢肖毅,张宏,等.黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J].生态学报,2013,33(15):4674-4682. |
38 | 刘秉儒,张秀珍,胡天华,等.贺兰山不同海拔典型植被带土壤微生物多样性[J].生态学报,2013,33(22):7211-7220. |
39 | 柳杨,何先进,侯恩庆.鼎湖山森林演替和海拔梯度上的土壤微生物生物量碳氮变化[J].生态学杂志,2017,36(2):287-294. |
40 | 赵盼盼,周嘉聪,林开淼,等.海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响[J].生态学报,2019,39(6):2215-2225. |
41 | 李亚园.贺兰山不同海拔凋落物-土壤-微生物生态化学计量特征及其关系研究[D].银川:宁夏大学,2022. |
42 | 白丽丽,王文颖,德却拉姆,等.祁连山典型植被土壤碳、氮、磷含量及生态化学计量特征的垂直变化[J].干旱区研究,2024,41(3):444-455. |
43 | 罗正明,刘晋仙,周妍英,等.亚高山草地土壤原生生物群落结构和多样性海拔分布格局[J].生态学报,2021,41(7):2783-2793. |
44 | 许淼平,任成杰,张伟,等.土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J].应用生态学报,2018,29(7):2445-2454. |
45 | 曾全超,李鑫,董扬红,等.黄土高原不同乔木林土壤微生物量碳氮和溶解性碳氮的特征[J].生态学报,2015,35(11):3598-3605. |
46 | He X J, Hou E Q, Veen G F,et al.Soil microbial biomass increases along elevational gradients in the tropics and subtropics but not elsewhere[J].Global Ecology and Biogeography,2020,29(2):345-354. |
47 | 张路.青藏高原高寒草地土壤微生物群落结构特征及影响因素[D].北京:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心),2022. |
48 | 尹华军,张子良,刘庆.森林根系分泌物生态学研究:问题与展望[J].植物生态学报,2018,42(11):1055-1070. |
[1] | Bingjie Jiao, Bingchang Zhang, Kang Zhao, Lixia Yan, Zhifang Wu. Promoting effect of biological soil crusts succession on soil nitrogen transformation and microbial activity in water-wind erosion crisscross region of Loess Plateau [J]. Journal of Desert Research, 2023, 43(4): 191-199. |
[2] | Yunjie Huang, Yonggang Li, Benfeng Ying, Yuanming Zhang. Response of nitrogen and phosphorus stoichiometry in Syntrichia caninervis to annual precipitation [J]. Journal of Desert Research, 2023, 43(2): 1-10. |
[3] | Jiannan Lu, Kaijun Liu, Ruixiong Wang, Yanjie Li, Zhiying Ning, Xueping Chen, Siteng Zhao, Shaokun Wang, Xueyong Zhao. Research advances in stoichiometry of desert plant-soil system in China [J]. Journal of Desert Research, 2022, 42(2): 173-182. |
[4] | Zhishan Zhang, Guisen Yang, Lü Xingyu, Rui Hu, Lei Huang. Research progresses in ecological stoichiometry of C, N and P in desert ecosystems [J]. Journal of Desert Research, 2022, 42(1): 48-56. |
[5] | Hangyu Yang, Yanmei Liu, Guangyuan Luo, Fenglian Liu. Effects of bacterial-feeding nematodes on soil microbial biomass under biocrusts in desert areas [J]. Journal of Desert Research, 2021, 41(6): 120-125. |
[6] | Haohai Su, Xiaofang Zhang, Yalin Niu, Hairu Wang, Jianjun Cao. Effects of altitude on leaf ecological stoichiometry of Stellera chamaejasme in the Qilian Mountains [J]. Journal of Desert Research, 2021, 41(6): 205-212. |
[7] | Ma Xiaojun, Li Yunfei. Soil Microbial Biomass and Enzyme Activities during Revegetation Process in the Southeastern Fringe of the Tengger Desert [J]. Journal of Desert Research, 2019, 39(6): 159-166. |
[8] | Yang Hangyu, Liu Changzhong, Liu Yanmei, Yang Haotian. Effects of Trampling Biocrusts on Soil Microbial Biomass in Desert Areas [J]. Journal of Desert Research, 2019, 39(2): 35-44. |
[9] | Sun Xiaodong, Ning Zhiying, Yang Hongling, Zhang Ziqian, Li Yulin. The Stoichiometry of Carbon, Nitrogen and Phosphorus in Soil in Typical Desertified Regions, North China [J]. Journal of Desert Research, 2018, 38(6): 1209-1218. |
[10] | Shi Wanli, Wang Hui, Ma Weiwei. Effects of Vegetation Restoration on Soil Microbial Biomass and Activity in Desert Area [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(3): 507-513. |
[11] | Shi Junhui, Ma Xuexi, Liu Maoxiu, Wang Xinying. Stoichiometric Characteristics of Breach, Leaf, Root in Populus euphratica with Different Forest Age [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(1): 109-115. |
[12] | Zhang Ke, Chen Yongle, Gao Yanhong, Hui Rong, He Mingzhu. Stoichiometry Characteristics of Leaf Nitrogen and Phosphorus of Different Plant Functional Groups in Alashan Desert Region [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(5): 1261-1267. |
[13] | Zhong Fang, Chai Xiaohong, Wang Guoji, Duan Zhenghu. Soil Physical-chemistry and Microbial Caracteristics under Different Vegetation Restoration Modes in the Loess Hilly Region [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(4): 1064-1072. |
[14] | Ma Wenwen, Yao Tuo, Jin Peng, Wang Guoji, Zhang Yuxia. Characteristics of Microorganisms and Enzyme Activity underTwo Plant Communities in Desert Steppe [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(1): 176-183. |
[15] | ZHANG Xue1, Wuyunna1, LIN Lu1,2, ZHAO Chen-yu1, WANG Xue-ting1, BAI Jia-yi1. Carbon Sequestration Features of Grassland Vegetation-Soil System under Different Grazing Intensities [J]. JOURNAL OF DESERT RESEARCH, 2013, 33(6): 1789-1795. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech