Journal of Desert Research ›› 2024, Vol. 44 ›› Issue (6): 307-317.DOI: 10.7522/j.issn.1000-694X.2024.00148
Previous Articles Next Articles
Haoyu He(), Wei Liu, Zongqiang Chang, Chunmei Hou, Liwei Sun, Xiuli Chi
Received:
2024-10-15
Revised:
2024-10-31
Online:
2024-11-20
Published:
2024-12-06
CLC Number:
Haoyu He, Wei Liu, Zongqiang Chang, Chunmei Hou, Liwei Sun, Xiuli Chi. Effects of revegetation on soil organic carbon composition and stability in the southern edge of the Tengger Desert[J]. Journal of Desert Research, 2024, 44(6): 307-317.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2024.00148
植被恢复年限/a | 方差分析结果 | |||||||
---|---|---|---|---|---|---|---|---|
0 | 12 | 20 | 32 | 41 | F | P | ||
植被盖度/% | 4.77±0.64a | 36.21±3.05b | 35.47±2.26b | 30.48±2.11c | 30.47±2.24c | 34.697 | 0.001 | |
AGB/(g·m-2) | 7.95±0.93a | 353.88±33.87b | 299.74±18.75b | 163.52±8.96c | 155.16±8.09c | 56.053 | 0.001 | |
BGB/(g·m-2) | 1.11±0.14a | 9.33±0.75b | 9.20±1.18b | 9.65±0.39b | 10.12±0.41c | 31.374 | 0.001 | |
凋落物/(g·m-2) | 0.00a | 7.76±0.82b | 8.74±0.77b | 11.95±0.74c | 16.22±1.66c | 39.338 | 0.001 | |
黏粉粒含量/% | 0.18±0.01a | 1.99±0.23b | 4.53±0.11c | 6.54±0.18d | 12.55±0.94e | 118.572 | 0.001 | |
砂粒含量/% | 99.82±0.01a | 98.01±0.23b | 95.47±0.11c | 93.46±0.18d | 87.45±0.93e | 118.572 | 0.001 | |
pH | 8.99±0.06a | 8.89±0.04ab | 8.84±0.03b | 8.58±0.17c | 8.50±0.09c | 4.984 | 0.018 | |
EC/(μS·cm-1) | 25.06±0.77a | 58.97±2.89b | 90.33±2.50c | 109.7±19.42cd | 131.97±11.40d | 16.991 | 0.001 | |
SOC/(g·kg-1) | 0.27±0.03a | 0.55±0.05b | 1.10±0.07c | 1.61±0.03d | 2.86±0.34e | 42.438 | 0.001 | |
TN/ (g·kg-1) | 0.17±0.001a | 0.21±0.02b | 0.26±0.04c | 0.38±0.02d | 0.54±0.04e | 24.630 | 0.001 | |
C∶N | 1.55±0.17a | 2.77±0.48b | 4.50±0.76c | 4.26±0.33c | 5.27±0.23d | 11.054 | 0.001 |
Table 1 Changes in vegetation characteristics and soil (0~10 cm) physicochemical properties during revegetation process
植被恢复年限/a | 方差分析结果 | |||||||
---|---|---|---|---|---|---|---|---|
0 | 12 | 20 | 32 | 41 | F | P | ||
植被盖度/% | 4.77±0.64a | 36.21±3.05b | 35.47±2.26b | 30.48±2.11c | 30.47±2.24c | 34.697 | 0.001 | |
AGB/(g·m-2) | 7.95±0.93a | 353.88±33.87b | 299.74±18.75b | 163.52±8.96c | 155.16±8.09c | 56.053 | 0.001 | |
BGB/(g·m-2) | 1.11±0.14a | 9.33±0.75b | 9.20±1.18b | 9.65±0.39b | 10.12±0.41c | 31.374 | 0.001 | |
凋落物/(g·m-2) | 0.00a | 7.76±0.82b | 8.74±0.77b | 11.95±0.74c | 16.22±1.66c | 39.338 | 0.001 | |
黏粉粒含量/% | 0.18±0.01a | 1.99±0.23b | 4.53±0.11c | 6.54±0.18d | 12.55±0.94e | 118.572 | 0.001 | |
砂粒含量/% | 99.82±0.01a | 98.01±0.23b | 95.47±0.11c | 93.46±0.18d | 87.45±0.93e | 118.572 | 0.001 | |
pH | 8.99±0.06a | 8.89±0.04ab | 8.84±0.03b | 8.58±0.17c | 8.50±0.09c | 4.984 | 0.018 | |
EC/(μS·cm-1) | 25.06±0.77a | 58.97±2.89b | 90.33±2.50c | 109.7±19.42cd | 131.97±11.40d | 16.991 | 0.001 | |
SOC/(g·kg-1) | 0.27±0.03a | 0.55±0.05b | 1.10±0.07c | 1.61±0.03d | 2.86±0.34e | 42.438 | 0.001 | |
TN/ (g·kg-1) | 0.17±0.001a | 0.21±0.02b | 0.26±0.04c | 0.38±0.02d | 0.54±0.04e | 24.630 | 0.001 | |
C∶N | 1.55±0.17a | 2.77±0.48b | 4.50±0.76c | 4.26±0.33c | 5.27±0.23d | 11.054 | 0.001 |
1 | Lal R.Carbon sequestration in dryland ecosystems[J].Environmental Management,2004,33(4):528-544. |
2 | Li X J, Li Y F, Xie T,et al.Recovery of soil carbon and nitrogen stocks following afforestation with xerophytic shrubs in the Tengger Desert,North China[J].CATENA,2022,214:106277. |
3 | Reynolds J F, Smith D S, Lambin E F,et al.Global desertification:building a science for dryland development[J].Science,2007,316(5826):847-851. |
4 | Huang J P, Yu H P, Guan X D,et al.Accelerated dryland expansion under climate change[J].Nature Climate Change,2016,6:166-171. |
5 | Maestre F T, Benito B M, Berdugo M,et al.Biogeography of global drylands[J].The New Phytologist,2021,231(2):540-558. |
6 | Lal R.Carbon cycling in global drylands[J].Current Climate Change Reports,2019,5(3):221-232. |
7 | Lal R.Potential of desertification control to sequester carbon and mitigate the greenhouse effect[M]//Storing Carbon in Agricultural Soils:A Multi-Purpose Environmental Strategy.Dordrecht,Netherlands:Springer,2001:35-72. |
8 | IPCC.Climate Change 2007:The Physical Science Basis[M].New York,USA:Cambridge University Press,2007. |
9 | Liu Z, Sun Y F, Zhang Y Q,et al.Desert soil sequesters atmospheric CO2 by microbial mineral formation[J].Geoderma,2020,361:114104. |
10 | Li Y F, Zhang X, Wang B Y,et al.Revegetation promotes soil mineral-associated organic carbon sequestration and soil carbon stability in the Tengger Desert,Northern China[J].Soil Biology and Biochemistry,2023,185:109155. |
11 | Li X J, Yang H T, Yang R.Divergent changes of carbon and nitrogen in the density fractions of soil organic matter after revegetation in the Tengger Desert,North China[J].Land Degradation Development,2024,35(8):2867-2883. |
12 | Cotrufo M F, Ranalli M G, Haddix M L,et al.Soil carbon storage informed by particulate and mineral-associated organic matter[J].Nature Geoscience,2019,12:989-994. |
13 | Heckman K, Hicks Pries C E, Lawrence C R,et al.Beyond bulk:density fractions explain heterogeneity in global soil carbon abundance and persistence[J].Global Change Biology,2022,28(3):1178-1196. |
14 | Zhou Z H, Ren C J, Wang C K,et al.Global turnover of soil mineral-associated and particulate organic carbon[J].Nature Communications,2024,15:5329. |
15 | Lavallee J M, Soong J L, Cotrufo M F.Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J].Global Change Biology,2020,26(1):261-273. |
16 | von Lützow M, Kögel-Knabner I, Ekschmitt K,et al.SOM fractionation methods:relevance to functional pools and to stabilization mechanisms[J].Soil Biology and Biochemistry,2007,39(9):2183-2207. |
17 | Kleber M, Bourg I C, Coward E K,et al.Dynamic interactions at the mineral-organic matter interface[J].Nature Reviews Earth Environment,2021,2:402-421. |
18 | Alvarez R, Alvarez C R.Soil organic matter pools and their associations with carbon mineralization kinetics[J].Soil Science Society of America Journal,2000,64(1):184-189. |
19 | Sokol N W, Bradford M A.Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J].Nature Geoscience,2019,12:46-53. |
20 | 于钊,李奇铮,王培源,等.退化和恢复过程驱动的荒漠草地生态系统有机碳密度变化[J].中国沙漠,2022,42(2):215-222. |
21 | 刘俊壕,周海盛,郭群.中国北方干旱半干旱区沙漠化治理对植被格局的影响[J].中国沙漠,2023,43(5):204-213. |
22 | Du L T, Zeng Y J, Ma L L,et al.Effects of anthropogenic revegetation on the water and carbon cycles of a desert steppe ecosystem[J].Agricultural and Forest Meteorology,2021,300:108339. |
23 | 马晓俊,李云飞.腾格里沙漠东南缘植被恢复过程中土壤微生物量及酶活性[J].中国沙漠,2019,39(6):159-166. |
24 | Ma Q L, Wang X Y, Chen F,et al.Carbon sequestration of sand-fixing plantation of Haloxylon ammodendron in Shiyang River Basin:storage,rate and potential[J].Global Ecology and Conservation,2021,28:e01607. |
25 | Angst G, Lichner L, Csecserits A,et al.Controls on labile and stabilized soil organic matter during long-term ecosystem development[J].Geoderma,2022,426:116090. |
26 | Angst G, Mueller K E, Castellano M J,et al.Unlocking complex soil systems as carbon sinks:multi-pool management as the key[J].Nature Communications,2023,14:2967. |
27 | 马全林.腾格里沙漠南缘土壤-植被系统恢复及其驱动机制[D].兰州:中国科学院寒区旱区环境与工程研究所,2009. |
28 | Frostegård, Bååth E, Tunlio A.Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis[J].Soil Biology and Biochemistry,1993,25(6):723-730. |
29 | Saiya-Cork K R, Sinsabaugh R L, Zak D R.The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J].Soil Biology and Biochemistry,2002,34(9):1309-1315. |
30 | Vance E D, Brookes P C, Jenkinson D S.An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,1987,19(6):703-707. |
31 | Nosetto M D, Jobbágy E G, Paruelo J M.Carbon sequestration in semi-arid rangelands:comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia[J].Journal of Arid Environments,2006,67(1):142-156. |
32 | Li X R, He M Z, Duan Z H,et al.Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert,Northern China[J].Geomorphology,2007,88(3/4):254-265. |
33 | 林永崇,穆桂金,陈丽玲,等.策勒绿洲近地表大气降尘粒度指示的分选特征及其意义[J].中国沙漠,2022,42(1):139-146. |
34 | Li X R, Xiao H L, He M Z,et al.Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions[J].Ecological Engineering,2006,28(2):149-157. |
35 | Qi P, Chen J, Wang X J,et al.Changes in soil particulate and mineral-associated organic carbon concentrations under nitrogen addition in China:a meta-analysis[J].Plant and Soil,2023,489(1):439-452. |
36 | Feng J G, He K Y, Zhang Q F,et al.Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems[J].Global Change Biology,2022,28(10):3426-3440. |
37 | Iwai C B, Oo A N, Topark-Ngarm B.Soil property and microbial activity in natural salt affected soils in an alternating wet-dry tropical climate[J].Geoderma,2012,189/190:144-152. |
38 | Craig M E, Mayes M A, Sulman B N,et al.Biological mechanisms may contribute to soil carbon saturation patterns[J].Global Change Biology,2021,27(12):2633-2644. |
39 | Mues R.Chemical constituents and biochemistry[M]//Bryophyte Biology.Cambridge,UK:Cambridge University Press,2000:150-181. |
40 | Abed R M M, Al-Sadi A M, Al-Shehi M,et al.Diversity of free-living and lichenized fungal communities in biological soil crusts of the Sultanate of Oman and their role in improving soil properties[J].Soil Biology and Biochemistry,2013,57:695-705. |
41 | Yang F J, Wang W Q, Wu Z W,et al.Fertilizer reduction and biochar amendment promote soil mineral-associated organic carbon,bacterial activity,and enzyme activity in a jasmine garden in southeast China[J].The Science of the Total Environment,2024,954:176300. |
42 | Lammirato C, Miltner A, Kaestner M.Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger [J].Soil Biology and Biochemistry,2011,43(9):1936-1942. |
43 | Dilly O, Munch J C, Pfeiffer E M.Enzyme activities and litter decomposition in agricultural soils in northern,central,and southern Germany[J].Journal of Plant Nutrition and Soil Science,2007,170(2):197-204. |
44 | Moran K K, Six J, Horwath W R,et al.Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation[J].Soil Science Society of America Journal,2005,69(6):1730-1736. |
45 | Begill N, Don A, Poeplau C.No detectable upper limit of mineral-associated organic carbon in temperate agricultural soils[J].Global Change Biology,2023,29(16):4662-4669. |
46 | Whalen J K, Bottomley P J, Myrold D D.Carbon and nitrogen mineralization from light-and heavy-fraction additions to soil[J].Soil Biology and Biochemistry,2000,32(10):1345-1352. |
[1] | Jun Lei, Xinping Cheng, Chun Xue, Hongmei Liu, Yuhong Zhao, Mingmin Xiao. The characteristics and stability of plant communities in the northern desert area of the middle reaches of the Heihe River Basin [J]. Journal of Desert Research, 2024, 44(6): 187-194. |
[2] | Congzhen Zhu, Jicheng Luo, Minzhong Wang, Lu Meng, Honglin Pan, Jiantao Zhang. Characteristics of the summer nighttime stable boundary layer in the hinterland of the Taklamakan Desert and its effect on dust aerosols concentration [J]. Journal of Desert Research, 2024, 44(5): 1-12. |
[3] | Fanrui Bu, Ying Liu, Xueyong Zou, Chunlai Zhang. Vegetation sustainability in relation to water resources in typical sandy areas of eastern China [J]. Journal of Desert Research, 2024, 44(4): 111-125. |
[4] | Xiaomei Peng, Cunwei Che, Jingrong Su, Shengchun Xiao. Construction and application of a dendrochronological evaluation method for the stability and suitability of artificial forests in arid areas [J]. Journal of Desert Research, 2024, 44(1): 33-42. |
[5] | Yaofang Shi, Xian Xue, Quangang You, Fei Peng, Cuihua Huang. Distribution characteristics of soil organic carbon and its relationship with soil physical properties in Ali Desert Area, Tibetan Plateau [J]. Journal of Desert Research, 2023, 43(3): 284-294. |
[6] | Meilan Zhang, Zengtuan Cui, Zhiheng Dun, Ruihong Jia, Yuxia Zhang, Shiqian Guo, Qianyi Cui, Chenxuan Ge, Liqun Cai, Bo Dong. The Spatial-temporal variance characteristic of soil organic carbon in cultivited land of Gansu Province and its influencing factors in the 40 years from 1980 to 2020 [J]. Journal of Desert Research, 2022, 42(6): 295-303. |
[7] | Meng Yan, Xuyang Wang, Liye Zhou, Yuqiang Li. Characteristics and influencing factors of soil organic carbon in the process of desertification in Horqin Sandy Land [J]. Journal of Desert Research, 2022, 42(5): 221-231. |
[8] | Yanbin Hu, Qiang Zhang, Guoju Xiao, Zhengji Qiu, Yongping Li, Zhanqiang Guo. Effect of soil carbon, nitrgen and phosphate contents on maize production in semi-arid regions of China [J]. Journal of Desert Research, 2022, 42(3): 261-273. |
[9] | Zhao Yu, Qizheng Li, Peiyuan Wang, Qi Jiang. Changes of organic carbon density in desert steppe ecosystem driven by degradation and restoration [J]. Journal of Desert Research, 2022, 42(2): 215-222. |
[10] | Quanlin Ma, Wen Shang, Xinyou Wang, Jing Ma, Kejie Zhan, Duoze Wang. Influence of sand blown activity on soil organic carbon and total nitrogen in artificial Haloxylon ammodendron plantations in arid desert regions [J]. Journal of Desert Research, 2022, 42(1): 71-78. |
[11] | Rui Si, Bing Liu, Wenzhi Zhao, Zhaocen Zhu, Ying Zhao. Species diversity and stability patterns of plant communities in the tail area of the Heihe River [J]. Journal of Desert Research, 2021, 41(3): 174-184. |
[12] | Liyue Cao, Yulin Li, Jin Zhan, Lina Shi. Effects of tillage on distribution and stability of soil aggregates in Horqin Sandy Land [J]. Journal of Desert Research, 2021, 41(2): 212-220. |
[13] | Tianyan Su, Wenjie Liu, Qiu Yang, Wei Mao. Review on response of soil carbon cycle to groundwater level change [J]. Journal of Desert Research, 2020, 40(5): 180-189. |
[14] | Chang Xueli, Li Xiumei, Bai Xuelian, Ji Shuxin, Wang Lixiang. Landscape stability and maintaining mechanism in desert-oasis ecotone [J]. Journal of Desert Research, 2020, 40(3): 43-50. |
[15] | Yang Lizhen, Feng Li, Yang Guisen, Huang Lei. Water absorption potential and influencing factors of leaf in Caragana korshinskii, Artemisia ordosica, Hedysarum scoparium in a revegetated area of the Tengger Desert, China [J]. Journal of Desert Research, 2020, 40(2): 214-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech