Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (4): 153-165.DOI: 10.7522/j.issn.1000-694X.2025.00106
Bo Yao1,2,3(), Jie Lian1,2,3, Xiangwen Gong4, Xiaoming Mou1,2,3, Yulin Li1,2,3, Yuqiang Li1,2,3, Xuyang Wang2,3(
)
Received:
2025-04-25
Revised:
2025-07-10
Online:
2025-07-20
Published:
2025-08-18
Contact:
Xuyang Wang
CLC Number:
Bo Yao, Jie Lian, Xiangwen Gong, Xiaoming Mou, Yulin Li, Yuqiang Li, Xuyang Wang. Spatial patterns and influencing factors of soil microbial carbon, nitrogen and phosphorus stoichiometry in Horqin Sandy Land[J]. Journal of Desert Research, 2025, 45(4): 153-165.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00106
变量 | 最小值 | 最大值 | 平均值 | 标准误差 | 偏度 | 峰度 |
---|---|---|---|---|---|---|
SOC/(g·kg-1) | 0.16 | 20.20 | 4.89 | 3.43 | 1.17 | 2.02 |
TN/(g·kg-1) | 0.04 | 2.21 | 0.46 | 0.38 | 1.34 | 2.23 |
TP/(g·kg-1) | 0.02 | 0.48 | 0.15 | 0.10 | 1.52 | 1.90 |
C∶N | 1.12 | 94.06 | 14.27 | 13.93 | 3.83 | 16.99 |
C∶P | 1.73 | 108.31 | 35.63 | 20.30 | 1.03 | 1.22 |
N∶P | 0.78 | 7.79 | 2.91 | 1.29 | 0.92 | 1.12 |
MBC/(mg·kg-1) | 1.24 | 575.02 | 112.92 | 129.77 | 1.58 | 1.83 |
MBN/(mg·kg-1) | 0.38 | 88.42 | 16.90 | 19.08 | 1.61 | 2.30 |
MBP/(mg·kg-1) | 1.00 | 74.80 | 11.41 | 11.44 | 2.27 | 6.81 |
MBC∶MBN | 0.63 | 21.90 | 7.29 | 4.43 | 0.98 | 0.47 |
MBC∶MBP | 0.35 | 91.27 | 11.26 | 14.11 | 3.05 | 10.77 |
MBN∶MBP | 0.07 | 10.16 | 1.56 | 1.47 | 2.69 | 9.80 |
pH | 6.60 | 8.81 | 7.02 | 0.74 | -0.06 | 2.10 |
BD/(g·cm-3) | 1.47 | 1.83 | 1.63 | 0.06 | 0.10 | 0.49 |
Table 1 Summary statistics of soil properties ( N=163)
变量 | 最小值 | 最大值 | 平均值 | 标准误差 | 偏度 | 峰度 |
---|---|---|---|---|---|---|
SOC/(g·kg-1) | 0.16 | 20.20 | 4.89 | 3.43 | 1.17 | 2.02 |
TN/(g·kg-1) | 0.04 | 2.21 | 0.46 | 0.38 | 1.34 | 2.23 |
TP/(g·kg-1) | 0.02 | 0.48 | 0.15 | 0.10 | 1.52 | 1.90 |
C∶N | 1.12 | 94.06 | 14.27 | 13.93 | 3.83 | 16.99 |
C∶P | 1.73 | 108.31 | 35.63 | 20.30 | 1.03 | 1.22 |
N∶P | 0.78 | 7.79 | 2.91 | 1.29 | 0.92 | 1.12 |
MBC/(mg·kg-1) | 1.24 | 575.02 | 112.92 | 129.77 | 1.58 | 1.83 |
MBN/(mg·kg-1) | 0.38 | 88.42 | 16.90 | 19.08 | 1.61 | 2.30 |
MBP/(mg·kg-1) | 1.00 | 74.80 | 11.41 | 11.44 | 2.27 | 6.81 |
MBC∶MBN | 0.63 | 21.90 | 7.29 | 4.43 | 0.98 | 0.47 |
MBC∶MBP | 0.35 | 91.27 | 11.26 | 14.11 | 3.05 | 10.77 |
MBN∶MBP | 0.07 | 10.16 | 1.56 | 1.47 | 2.69 | 9.80 |
pH | 6.60 | 8.81 | 7.02 | 0.74 | -0.06 | 2.10 |
BD/(g·cm-3) | 1.47 | 1.83 | 1.63 | 0.06 | 0.10 | 0.49 |
指标 | MAE | RMSE | MSE | RMSSE |
---|---|---|---|---|
SOC | -0.060 | 3.002 | -0.021 | 1.035 |
TN | -0.008 | 0.322 | -0.025 | 1.049 |
TP | -0.004 | 0.066 | -0.055 | 1.046 |
C:N | 0.237 | 11.781 | 0.017 | 0.839 |
C:P | 0.531 | 16.439 | 0.027 | 0.922 |
N:P | 0.037 | 1.251 | 0.028 | 0.991 |
Table 2 Accuracy evaluation indicators of soil carbon, nitrogen, phosphorus and stoichiometric prediction models
指标 | MAE | RMSE | MSE | RMSSE |
---|---|---|---|---|
SOC | -0.060 | 3.002 | -0.021 | 1.035 |
TN | -0.008 | 0.322 | -0.025 | 1.049 |
TP | -0.004 | 0.066 | -0.055 | 1.046 |
C:N | 0.237 | 11.781 | 0.017 | 0.839 |
C:P | 0.531 | 16.439 | 0.027 | 0.922 |
N:P | 0.037 | 1.251 | 0.028 | 0.991 |
指标 | MAE | RMSE | MSE | RMSSE |
---|---|---|---|---|
MBC | -2.468 | 104.329 | -0.026 | 1.023 |
MBN | -0.329 | 15.565 | -0.024 | 1.036 |
MBP | -0.189 | 10.148 | -0.020 | 1.052 |
MBC∶MBN | -0.006 | 4.080 | -0.003 | 0.943 |
MBC∶MBP | -0.031 | 11.294 | -0.012 | 1.074 |
MBN∶MBP | -0.021 | 1.228 | -0.016 | 1.012 |
Table 3 Accuracy evaluation indicators of soil microbial biomass carbon, nitrogen, phosphorus and stoichiometric prediction models
指标 | MAE | RMSE | MSE | RMSSE |
---|---|---|---|---|
MBC | -2.468 | 104.329 | -0.026 | 1.023 |
MBN | -0.329 | 15.565 | -0.024 | 1.036 |
MBP | -0.189 | 10.148 | -0.020 | 1.052 |
MBC∶MBN | -0.006 | 4.080 | -0.003 | 0.943 |
MBC∶MBP | -0.031 | 11.294 | -0.012 | 1.074 |
MBN∶MBP | -0.021 | 1.228 | -0.016 | 1.012 |
[1] | Deng X F, Ma W Z, Ren Z Q,et al.Spatial and temporal trends of soil total nitrogen and C/N ratio for croplands of East China[J].Geoderma,2020,361:114035. |
[2] | Powlson D S, Prookes P C, Christensen B T.Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J].Soil Biology and Biochemistry,1987,19(2):159-164. |
[3] | Li P, Yang Y H, Han W X,et al.Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems[J].Global Ecology and Biogeography,2015,23(9):979-987. |
[4] | Sterner R W, Elser J J.Ecological Stoichiometry:the Biology of Elements from Molecules to the Biosphere[M].Princeton, USA:Princeton University Press,2002. |
[5] | Yamamuro M, Kamiya H.Elemental (C, N, P) and isotopic (delta C-13, delta N-15) signature of primary producers and their contribution to the organic matter in coastal lagoon sediment[J].Landscape and Ecological Engineering, 2014,10 (1):65-75. |
[6] | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil:Is there a “Redfield ratio” for the microbial biomass?[J].Biogeochemistry,2007,85(3):235-252. |
[7] | Wang W, Sardans J, Zeng C,et al.Peñuelas,responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland[J].Geoderma,2014,232:459-470. |
[8] | Liu J Q, Liu W Q, Long X E,et al. Effects of nitrogen addition on C∶N∶P stoichiometry in moss crust-soil continuum in the N-limited Gurbantünggüt Desert, Northwest China[J].European Journal of Soil Biology,2020,98:103174. |
[9] | Feng D, Bao W, Pang X.Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests[J].Journal of Soils and Sediments,2017,17:2054-2065. |
[10] | Hu C, Li F,Xie, Y H,et al.patial distribution and stoichiometry of soil carbon, nitrogen and phosphorus along an elevation gradient in a wetland in China[J].European Journal of Soil Science,2019,70(6):1128-1140. |
[11] | Guo X, Jiang Y.Spatial characteristics of ecological stoichiometry and their driving factors in farmland soils in Poyang Lake Plain, Southeast China[J].Journal of Soils and Sediments,2019,9:263-274. |
[12] | Hui D F, Yang X T, Deng X Q,et al.Soil C∶N∶P stoichiometry in tropical forests on Hainan Island of China:spatial and vertical variations[J],Catena, 2021,201:105228. |
[13] | Liu J G, Gou X H, Zhang F,et al.Spatial patterns in the C∶N∶P stoichiometry in Qinghai spruce and the soil across the Qilian Mountains, China[J],Catena,2021,196:104814. |
[14] | Chen S C, Arrouays D, Mulder V L,et al.Digital mapping of global soil map soil properties at a broad scale:a review[J].Geoderma,2022,409:115567. |
[15] | 刘新民,赵哈林,徐斌.科尔沁沙地破坏起因及恢复途径[J].生态学杂志,1992,11(5):38-41. |
[16] | 赵学勇,张春民,左小安,等.科尔沁沙地沙漠化土地恢复面临的挑战[J].应用生态学报,2009,20(7):33-38. |
[17] | 王涛,吴薇,薛娴,等.近50年来中国北方沙漠化土地的时空变化[J].地理学报,2004,59(2):203-212. |
[18] | 李玉强,王旭洋,郑成卓,等.科尔沁沙地防沙治沙实践与生态可持续修复浅议[J].中国沙漠,2024,44(4):302-314. |
[19] | 卢建男,李玉强,赵学勇,等.半干旱区典型沙地生态环境演变特征及沙漠化防治建议[J].中国沙漠,2024,44(4):284-292. |
[20] | 颜长珍,王建华.中国1∶10万沙漠(沙地)分布数据集[DS].国家地球系统科学数据中心.2020.CSTR:11738.11.ncdc.Westdc.2020.676. |
[21] | 鲁如坤.土壤农业化学分析法[M].北京:中国农业科技出版社,2000:28-264. |
[22] | Vance E D, Brookes P C, Jenkinson D S.An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,1987,19:703-707. |
[23] | Xia F, Hu B, Zhu Y,et al.Improved mapping of potentially toxic elements in soil via integration of multiple data sources and various geostatistical methods[J].Remote Sensing,2020,12(22):3775. |
[24] | Hu B F, Xie M D, Li H Y,et al.Stoichiometry of soil carbon,nitrogen, and phosphorus in farmland soils in Suthern China:spatial pattern and related dominates[J].Catena,2022,217:106468. |
[25] | Sterner R W, Elser J J.Ecological Stoichiometry:the Biology of Elements from Molecules to the Biosphere[M].Princeton, New Jersey,USA:Princeton University Press,2002. |
[26] | 李丹,范拴喜,孙旻涵,等.秦岭中段太白山以北不同海拔土壤碳·氮·磷生态化学计量特征[J].安徽农业科学,2023,51(9): 49-52. |
[27] | Liu Y, Lv J, Zhang B,et al.Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China[J].Science of the Total Environment,2013,(450/451):108-119. |
[28] | Liu Z P, Shao M A, Wang Y Q.Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China[J].Geoderma,2013,197/198:67-78. |
[29] | Duan L, Li Z, Xie H,et al.Regional pattern of soil organic carbon density and its influence upon the plough layers of cropland[J].Land Degradation and Development,2020,31(16):2461-2474. |
[30] | Wang X Y, Li Y Q, Gong X W,et al.Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of Northern China[J].Geoderma,2019,343:155-165. |
[31] | Zhang H, Ouyang Z C, Jiang P H,et al.Spatial distribution patterns and influencing factors of soil carbon, phosphorus, and C∶P ratio on farmlands in Southeastern China[J].Catena,2022,216:106409. |
[32] | 李玉霖,崔建垣.科尔沁沙地风沙土地温特征及其分析[J].中国沙漠,2000,20():43-45. |
[33] | 张凤荣,周建,徐艳,等.基于地学规律的科尔沁沙地土地整治与生态修复规划方法[J].地学前缘,2021,28(4):35-41. |
[34] | 蒋德明,周全来,阿拉木萨,等.科尔沁沙地植被生产力对模拟增加降水和氮沉降的响应[J].生态学杂志,2011,30(6):1070-1074. |
[35] | 施春健.科尔沁沙质草地土壤养分空间变异研究[D].沈阳:中国科学院沈阳应用生态研究所,2007. |
[36] | 张洋,倪九派,周川,等.三峡库区紫色土旱坡地桑树配置模式对土壤微生物生物量碳氮的影响[J].中国生态农业学报,2014,22(7):766-773. |
[37] | Bui E N, Henderson B L.C∶N∶P stoichiometry in Australian soils with respect to vegetation and environmental factors[J].Plant and Soil,2013,373(1):553-568. |
[38] | 曹祥会,龙怀玉,周脚根,等.中温-暖温带表土碳氮磷生态化学计量特征的空间变异性:以河北省为例[J].生态学报,2017,37(18):6053-6063. |
[39] | 王建林,钟志明,王忠红,等.青藏高原高寒草原生态系统土壤碳磷比的分布特征[J].草业学报,2014,23(2):9-19. |
[40] | 张晗,欧阳真程,赵小敏.不同利用方式对江西省农田土壤碳氮磷生态化学计量特征的影响[J].环境科学学报,2019,39(3):939-951. |
[41] | Deng X, Chen X, Ma W,et al.Baseline map of organic carbon stock in farmland topsoil in East China[J].Agriculture,Ecosystems & Environment,2018,54:213-223. |
[42] | Ren F, Misselbrook T H, Sun N,et al.Spatial changes and driving variables of topsoil organic carbon stocks in Chinese croplands under different fertilization strategies[J].Science of the Total Environment,2021,767:144350. |
[43] | Tian H, Chen G, Zhang C,et al. Pattern and variation of C∶N∶P ratios in China's soils:a synthesis of observational data[J].Biogeochemistry,2010,98(1/3):139-151. |
[44] | 黄昌勇,徐建明.土壤学[M].北京:中国农业出版社,2010:201-204. |
[45] | 王永壮,陈欣,史奕.农田土壤中磷素有效性及影响因素[J].应用生态学报,2013,24(1):260-268. |
[46] | Urabe J, Sterner R W.Regulation of herbivore growth by the balance of light and nut rients[J].PNAS,1996,93(16):8465-8469. |
[47] | 苟富刚,蔡露明,陆徐荣.连云港耕地土壤有机碳时空分异及影响因素[J].农业环境科学学报,2024,43(10):2363-2374. |
[48] | 吴秀芝,刘秉儒,阎欣,等.荒漠草地土壤微生物生物量和微生物熵对沙漠化的响应[J].应用生态学报,2019,30(8):2691-2698. |
[49] | 吴秀芝,阎欣,王波,等.荒漠草地沙漠化对土壤养分和胞外酶活性的影响[J].生态环境学报,2018,27(6):1082-1088. |
[50] | Van Gestel M, Merckx R, Vlassak K J.Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying[J].Soil Biology and Biochemistry,1996,28(4/5):503-10. |
[51] | Wiesmeier M, Urbanski L, Hobley E,et al.Soil organic carbon storage as a key function of soils:a review of drivers and indicators at various scales[J].Geoderma,2019,333:149-162. |
[52] | 王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947. |
[53] | Pan Y L, Fang F, Tang H P.Patterns and internal stability of carbon,nitrogen, and phosphorus in soils and soil microbial biomass in terrestrial ecosystems in China:a data synthesis[J].Forests,2021,12(11):1544. |
[54] | 李春越,郝亚辉,薛英龙,等.长期施肥对黄土旱塬农田土壤微生物量碳、氮、磷的影响[J].农业环境科学学报,2020,39(8):1783-1791. |
[55] | 黄浩博,毕华兴,赵丹阳,等.黄土高原不同密度刺槐林地土壤-微生物-胞外酶生态化学计量特征[J].生态学报,2025,45(3):1351-1361. |
[56] | 陶冶,吴甘霖,刘耀斌,等.古尔班通古特沙漠典型灌木群落土壤化学计量特征及其影响因素[J].中国沙漠,2017,37(2):305-314. |
[57] | 付志高,肖以华,许涵,等.南亚热带常绿阔叶林土壤微生物生物量碳氮年际动态特征及其影响因子[J].生态学报,2024,44(3):1092-1103. |
[58] | 张志山,杨贵森,吕星宇,等.荒漠生态系统C、N、P生态化学计量研究进展[J].中国沙漠,2022,42(1):48-56. |
[1] | Simiao Guo, Xiaolei Zhou, Ju Ren, Runlong Wang, Yuke Fan, Rui Liu, Xiaowei Zhang. Ecological stoichiometric characteristics of soil in Baidunzi Salt Marsh National Wetland Park, Jingtai, Gansu Province [J]. Journal of Desert Research, 2025, 45(2): 252-261. |
[2] | gaowa Saren, Yuanyuan Zhao, Xinzhi Geng, Yue Wang, Guanglei Gao. Sustainability assessment of the human-earth system in the sandy areas of Inner Mongolia from 2000 to 2020 [J]. Journal of Desert Research, 2025, 45(2): 71-82. |
[3] | Yuqian Li, Xuyang Wang, Hongdong Lin, Xiaoming Mou, Weiyuan Liu, Jie Lian, Yuqiang Li. Effects of altitude gradient on soil microbial carbon, nitrogen and phosphorus stoichiometric characteristics in Maxian Mountain ecosystem [J]. Journal of Desert Research, 2025, 45(1): 151-161. |
[4] | Jing Zhang, Xiaoan Zuo, Peng Lv. Effects of changes in growing season precipitation regimes on plant community structure, function and aboveground biomass in typical habitats in the Horqin Sandy Land [J]. Journal of Desert Research, 2024, 44(4): 1-13. |
[5] | Hanchen Duan, Beiying Huang. Comprehensive evaluation of land desertification sensitivity in the Horqin Sandy Land based on the coupling of AHP and improved MEDALUS model [J]. Journal of Desert Research, 2024, 44(4): 137-148. |
[6] | Zhihan Xie, Min Liu, Xugang Yan, Yapeng Ren. Spatial pattern of important geological remains and evaluation of geotourism development potential in the Yellow River Basin [J]. Journal of Desert Research, 2024, 44(3): 128-139. |
[7] | Jun Luo, Xuebin Zhang, Peiji Shi. Spatial evolution characteristics and zoning optimization of Lanzhou-Xining urban agglomeration in the upper reaches of the Yellow River [J]. Journal of Desert Research, 2024, 44(3): 182-193. |
[8] | Xiaoyu Han, Yunping Chi, Yuanyun Xie, Chunguo Kang, Peng Wu, Yehui Wang, Lei Sun, Zhengyu Wei. Material composition characteristics of fine particles of eolian sand in Horqin Sandy Land and its indication to provenance [J]. Journal of Desert Research, 2024, 44(3): 231-246. |
[9] | Jialong Ren, Jiliang Liu, Yongzhen Wang, Jing Fang, Yilin Feng, Anling Gao, Yuanxia Song, Weidong Xin. Response of ground arthropod assemblages to precipitation and temperature changes in the gobi desert [J]. Journal of Desert Research, 2024, 44(2): 207-219. |
[10] | Tianling Bao, Jiliang Liu, Feng Yuan, Yinlong Li, Zhenyu Jia, Chengchen Pan. Response of plant community to experimental warming in Horqin Sandy Land [J]. Journal of Desert Research, 2024, 44(1): 151-160. |
[11] | Yuwei Li, Bo Wang, Yuhai Bao, Yanlong Han, Maolin Yan, Weifeng Wang. Effects of the development of grassland blowouts on soil ecological stoichiometry [J]. Journal of Desert Research, 2023, 43(5): 166-175. |
[12] | Bingjie Jiao, Bingchang Zhang, Kang Zhao, Lixia Yan, Zhifang Wu. Promoting effect of biological soil crusts succession on soil nitrogen transformation and microbial activity in water-wind erosion crisscross region of Loess Plateau [J]. Journal of Desert Research, 2023, 43(4): 191-199. |
[13] | Yunjie Huang, Yonggang Li, Benfeng Ying, Yuanming Zhang. Response of nitrogen and phosphorus stoichiometry in Syntrichia caninervis to annual precipitation [J]. Journal of Desert Research, 2023, 43(2): 1-10. |
[14] | Yu Ren, Bo Zhang, Xidong Chen. Desertification sensitivity assessment in Horqin Sandy Land [J]. Journal of Desert Research, 2023, 43(2): 159-169. |
[15] | Yushuo Zhang, Xuerui Shen, Renjing Sui, Jie Bao, Zhonglei Yu, Lin Zhao, Xuebin Zhang. Multi-scale analysis of spatial pattern and the influencing factors of A-grade scenic spots in the Yellow River Basin [J]. Journal of Desert Research, 2022, 42(6): 103-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech