Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (4): 190-199.DOI: 10.7522/j.issn.1000-694X.2025.00099
Zhiying Ning1(), Yulin Li3, Xueyong Zhao3, Yanjun Zhang4, Haibing Wang1,2, Min Yan1,2, Ruimin Liu1, Heju Zuo1,2(
)
Received:
2025-05-11
Revised:
2025-06-26
Online:
2025-07-20
Published:
2025-08-18
Contact:
Heju Zuo
CLC Number:
Zhiying Ning, Yulin Li, Xueyong Zhao, Yanjun Zhang, Haibing Wang, Min Yan, Ruimin Liu, Heju Zuo. Effects litter decomposition characteristics of dominant plants on soil microbial community in Horqin Sandy Land[J]. Journal of Desert Research, 2025, 45(4): 190-199.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00099
化学组成 | 狗尾草 | 糙隐子草 | 达乌里胡枝子 | 小叶锦鸡儿 | 盐蒿 | 尖头叶藜 |
---|---|---|---|---|---|---|
纤维素/(mg·g-1) | 460.29±5.11a | 460.72±7.90a | 270.09±6.43bc | 283.00±6.79bc | 289.95±6.85b | 265.08±11.92c |
半纤维素/(mg·g-1) | 242.06±5.97a | 248.30±2.00a | 78.11±2.55c | 98.22±4.54d | 83.52±0.22c | 50.89±1.89d |
木质素/(mg·g-1) | 95.30±2.53d | 105.26±1.86c | 145.18±5.00a | 74.85±2.80e | 123.34±2.40b | 56.79±1.31f |
C含量/% | 42.02±0.30d | 45.04±0.16b | 45.98±0.14a | 44.27±0.25c | 44.10±0.09c | 37.38±0.46e |
N含量/% | 0.77±0.02e | 1.23±0.09d | 2.44±0.01c | 3.18±0.02b | 2.48±0.01c | 3.32±0.01a |
C∶N | 54.48±1.11a | 37.46±2.50b | 18.87±0.17c | 13.91±0.10d | 17.75±0.08c | 11.23±0.11d |
木质素∶N | 12.32±0.19a | 8.75±0.57b | 5.96±0.24c | 2.34±0.07e | 4.96±0.11d | 1.71±0.04d |
Table 1 Comparison of chemical components of litter from different species
化学组成 | 狗尾草 | 糙隐子草 | 达乌里胡枝子 | 小叶锦鸡儿 | 盐蒿 | 尖头叶藜 |
---|---|---|---|---|---|---|
纤维素/(mg·g-1) | 460.29±5.11a | 460.72±7.90a | 270.09±6.43bc | 283.00±6.79bc | 289.95±6.85b | 265.08±11.92c |
半纤维素/(mg·g-1) | 242.06±5.97a | 248.30±2.00a | 78.11±2.55c | 98.22±4.54d | 83.52±0.22c | 50.89±1.89d |
木质素/(mg·g-1) | 95.30±2.53d | 105.26±1.86c | 145.18±5.00a | 74.85±2.80e | 123.34±2.40b | 56.79±1.31f |
C含量/% | 42.02±0.30d | 45.04±0.16b | 45.98±0.14a | 44.27±0.25c | 44.10±0.09c | 37.38±0.46e |
N含量/% | 0.77±0.02e | 1.23±0.09d | 2.44±0.01c | 3.18±0.02b | 2.48±0.01c | 3.32±0.01a |
C∶N | 54.48±1.11a | 37.46±2.50b | 18.87±0.17c | 13.91±0.10d | 17.75±0.08c | 11.23±0.11d |
木质素∶N | 12.32±0.19a | 8.75±0.57b | 5.96±0.24c | 2.34±0.07e | 4.96±0.11d | 1.71±0.04d |
[1] | Li S, Lu S, Zhang Y,et al.The change of global terrestrial ecosystem net primary productivity (NPP) and its response to climate change in CMIP5[J].Theoretical and Applied Climatology,2015,121(1/2):319-335. |
[2] | Bhatnagar J M, Peay K G, Treseder K K.Litter chemistry influences decomposition through activity of specific microbial functional guilds[J].Ecological Monographs,2018,88(3):429-444. |
[3] | Zhang D, Hui D, Luo Y,et al.Rates of litter decomposition in terrestrial ecosystems:global patterns and controlling factors[J].Journal of Plant Ecology,2008,1(2):85-93. |
[4] | Wickings K, Grandy A S, Reed S C,et al.The origin of litter chemical complexity during decomposition[J].Ecology Letters,2012,15(10):1180-1188. |
[5] | Melillo J M, Aber J D, Muratore J F.Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J].Ecology,1982,3(3):621-626. |
[6] | Hobbie S E.Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian Montane forest[J].Ecosystems,2000,3(5):484-494. |
[7] | Cotrufo M F, Wallenstein M D, Boot C M,et al.The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? [J].Global Change Biology,2013,19(4):988-995. |
[8] | Hobbie S E.Plant species effects on nutrient cycling: revisiting litter feedbacks[J].Trends in Ecology & Evolution,2015,30(6):357-363. |
[9] | Cleveland C C, Reed S C, Keller A B,et al.Litter quality versus soil microbial community controls over decomposition: a quantitative analysis[J].Oecologia,2014,174(1):283-294. |
[10] | Pascault N, Ranjard L, Kaisermann A,et al.Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect[J].Ecosystems,2013,16(5):810-822. |
[11] | Hoppe B, Purahong W, Wubet T,et al.Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests[J].Fungal Diversity,2016,77(1):367-379. |
[12] | Bardgett R D, Mommer L, De Vries F T,et al.Going underground:root traits as drivers of ecosystem processes[J].Trends in Ecology & Evolution,2014,29(12):692-699. |
[13] | Berg B.Litter decomposition and organic matter turnover in northern forest soils[J].Forest Ecology and Management,2000,133(1/2):13-22. |
[14] | 李雨菲,郭屹立,李先琨.等 .桂西南喀斯特季节性雨林凋落叶分解速率和养分含量特征分析[J].地球学报,2022,43(4):483-490. |
[15] | Gavazov K S.Dynamics of alpine plant litter decomposition in a changing climate[J].Plant and Soil,2010,337(1):19-32. |
[16] | 程煜.闽楠叶凋落物分解动态及其养分释放规律研究[D].福州:福建农林大学,2003. |
[17] | Cotrufo M F, Soong J L, Horto A J,et al.Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J].Nature Geoscience,2015,8(10):776-779. |
[18] | Du N, Li W, Qiu L,et al.Mass loss and nutrient release during the decomposition of sixteen types of plant litter with contrasting quality under three precipitation regimes[J].Ecology and Evolution,2020,10(7):3367-3382. |
[19] | Balasubramanian D, Arunachalam K, Das A,et al.Decomposition and nutrient release of Eichhornia crassipes (Mart.) Solms.under different trophic conditions in wetlands of Eastern Himalayan foothills[J].Ecological Engineering,2012,44:111-122. |
[20] | Li D, Niu S, Luo Y,et al.Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation:a meta-analysis[J].New Phytologist,2012,195(1):172-181. |
[21] | de Graaff M A, Classen A T, Castro H F,et al.Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates[J].New Phytologist,2010,188(4):1055-1064. |
[22] | de Boer W, Folman L B, Summerbell R C,et al.Living in a fungal world: impact of fungi on soil bacterial niche development[J].Fems Microbiology Reviews,2005,29(4):795-811. |
[23] | Vorísková J, Baldrian P.Fungal community on decomposing leaf litter undergoes rapid successional changes[J].Isme Journal,2013,7(3):477-486. |
[24] | Eichorst S A, Trojan D, Roux S,et al.Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments[J].Environmental Microbiology,2018,20(3):1041-1063. |
[25] | Song D D, Ren L, Li X,et al.Soil bacterial diversity and composition of different forest types in Greater Xing'an Mountains,China[J].Applied Ecology and Environmental Research,2021,19(3):1983-1997. |
[26] | Zhang N, Li Y, Wubet T,et al.Tree species richness and fungi in freshly fallen leaf litter:unique patterns of fungal species composition and their implications for enzymatic decomposition[J].Soil Biology & Biochemistry,2018,127:120-126. |
[27] | Dong X, Gao P, Zhou R,et al.Changing characteristics andinfluencing factors of the soil microbial community during litter decompositionin a mixed Quercus acutissima Carruth.and Robinia pseudoacacia L.forest in Northern China[J].Catena,2021,196:104811. |
[28] | 杨贵森,张志山,赵洋,等.沙坡头地区凋落物分解及其对土壤微生物群落的影响[J].应用生态学报,2022,33(7):1810-1818. |
[29] | 李姗姗,王正文,杨俊杰,等.凋落物分解过程中土壤微生物群落的变化[J].生物多样性,2016,24(2):195-204. |
[30] | Zhang C, Liu G, Xue S,et al.Soil bacterial commun ity dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J].Soil Biology & Biochemistry,2016,97:40-49. |
[31] | 陈法霖,郑华,欧阳志云,等.土壤微生物群落结构对凋落物组成变化的响应[J].土壤学报,2011,48(3):603-611. |
[32] | Pei Z, Leppert K N, Eichenberg D,et al.Leaf litter diversity alters microbial activity,microbial abundances,and nutrient cycling in a subtropical forest ecosystem[J].Biogeochemistry,2017,134(1/2):163-181. |
[33] | Purahong W, Krueger D, Buscot F,et al.Correlations between the composition of modular fungal communities and litter decomposition-associated ecosystem functions[J].Fungal Ecology,2016,22:106-114. |
[34] | 张利利.微生物对黄土高原残塬沟壑区三种林分凋落物分解和养分归还的影响机制研究[D].杨凌:西北农林科技大学,2022. |
[35] | Zheng H, Yang T, Bao Y,et al.Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics[J].Soil Biology & Biochemistry,2021,157:108230. |
[1] | Bo Yao, Jie Lian, Xiangwen Gong, Xiaoming Mou, Yulin Li, Yuqiang Li, Xuyang Wang. Spatial patterns and influencing factors of soil microbial carbon, nitrogen and phosphorus stoichiometry in Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 153-165. |
[2] | Jianpeng Zhang, Luming Lei, Yuqiang Li, Tianai Li, Xueyong Zhao, Haotong Ren, Hong Jia, Yangyang Wang, Lihan Cui. Sustainability assessment of human-earth systems from ecosystem service supply-demand perspectives: evidence from Horqin Sandy Land, China [J]. Journal of Desert Research, 2025, 45(4): 176-189. |
[3] | gaowa Saren, Yuanyuan Zhao, Xinzhi Geng, Yue Wang, Guanglei Gao. Sustainability assessment of the human-earth system in the sandy areas of Inner Mongolia from 2000 to 2020 [J]. Journal of Desert Research, 2025, 45(2): 71-82. |
[4] | Yidan Zhao, Tuo Chen, Yang Liu, Lu Zhang, Yiyang Zhang, Wei Zhang, Gaosen Zhang. Daily variations in chlorophyll fluorescence parameters of hypolithic cyanobacteria in desert region of the Hexi Corridor [J]. Journal of Desert Research, 2024, 44(5): 23-28. |
[5] | Jing Zhang, Xiaoan Zuo, Peng Lv. Effects of changes in growing season precipitation regimes on plant community structure, function and aboveground biomass in typical habitats in the Horqin Sandy Land [J]. Journal of Desert Research, 2024, 44(4): 1-13. |
[6] | Hanchen Duan, Beiying Huang. Comprehensive evaluation of land desertification sensitivity in the Horqin Sandy Land based on the coupling of AHP and improved MEDALUS model [J]. Journal of Desert Research, 2024, 44(4): 137-148. |
[7] | Yuxi Wei, Lijuan Chen, Qi Feng, Haiyang Xi, Rui Guo, Chengqi Zhang. Progress on microbial characteristics in arid salt-affected soils and related factors [J]. Journal of Desert Research, 2024, 44(3): 18-30. |
[8] | Xiaoyu Han, Yunping Chi, Yuanyun Xie, Chunguo Kang, Peng Wu, Yehui Wang, Lei Sun, Zhengyu Wei. Material composition characteristics of fine particles of eolian sand in Horqin Sandy Land and its indication to provenance [J]. Journal of Desert Research, 2024, 44(3): 231-246. |
[9] | Tianling Bao, Jiliang Liu, Feng Yuan, Yinlong Li, Zhenyu Jia, Chengchen Pan. Response of plant community to experimental warming in Horqin Sandy Land [J]. Journal of Desert Research, 2024, 44(1): 151-160. |
[10] | Yu Ren, Bo Zhang, Xidong Chen. Desertification sensitivity assessment in Horqin Sandy Land [J]. Journal of Desert Research, 2023, 43(2): 159-169. |
[11] | Bing Jia, Jianhua Si, Zhibo Wu, Shi Qi, Lili Ma, Xinglin Zhu, Jie Qin, Funian Shi. Effects of seed pelleting in aerial seeding on vegetation and soil [J]. Journal of Desert Research, 2023, 43(2): 195-204. |
[12] | Yanxia Pan, Rong Hui, Xinrong Li. Distribution and characteristics of microorganisms in deserts of China [J]. Journal of Desert Research, 2023, 43(1): 244-256. |
[13] | Kang Zhao, Lei Zhang, Kaikai Li, Fei Wang, Bingchang Zhang. A review on autotrophic microorganisms research in dryland soils [J]. Journal of Desert Research, 2022, 42(5): 177-186. |
[14] | Meng Yan, Xuyang Wang, Liye Zhou, Yuqiang Li. Characteristics and influencing factors of soil organic carbon in the process of desertification in Horqin Sandy Land [J]. Journal of Desert Research, 2022, 42(5): 221-231. |
[15] | Chao He, Tingxi Liu, Limin Duan, Guanli Wang, Lina Hao. Water use characteristics of typical plant Artemisia halodendron in Horqin Sandy Land [J]. Journal of Desert Research, 2022, 42(4): 190-198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech