Journal of Desert Research ›› 2024, Vol. 44 ›› Issue (3): 18-30.DOI: 10.7522/j.issn.1000-694X.2023.000126
Previous Articles Next Articles
Yuxi Wei1,2(), Lijuan Chen1,2(
), Qi Feng1,2, Haiyang Xi1,2, Rui Guo1, Chengqi Zhang1
Received:
2023-08-30
Revised:
2023-09-26
Online:
2024-05-20
Published:
2024-06-11
Contact:
Lijuan Chen
CLC Number:
Yuxi Wei, Lijuan Chen, Qi Feng, Haiyang Xi, Rui Guo, Chengqi Zhang. Progress on microbial characteristics in arid salt-affected soils and related factors[J]. Journal of Desert Research, 2024, 44(3): 18-30.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.000126
时间 | 研究区 | 土壤微生物优势菌群 | 其他菌群 | 参考文献 |
---|---|---|---|---|
2012年 | 甘肃省河西走廊 | 变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes) | 酸杆菌门(Acidobacteria)、浮霉菌门(Planctomycetes)、绿弯菌门(Chloroflexi)、芽单胞菌门(Gemmatimonadetes)、厚壁菌门(Firmicutes)、疣微菌门(Verrucomicrobia)、装甲菌门(Armatimonadetes)、绿菌门(Chlorobi)、蓝细菌门(Cyanobacteria)、硝化螺菌门(Nitrospira)、广古菌门(Euryarchaeota)、泉古菌门(Crenarchaeota) | [ |
宁夏银北地区 | 变形菌门 | 拟杆菌门、放线菌门、厚壁菌门、广古菌门、芽单胞菌门、酸杆菌门、蓝细菌门、浮霉菌门、绿弯菌门、疣微菌门、梭杆菌门(fusobacteria) | [ | |
2017年 | 宁夏银北西大滩 | 厚壁菌门、变形菌门、放线菌门 | 拟杆菌门、芽单胞菌门、酸杆菌门、疣微菌门、绿弯菌门 | [ |
2018—2019年 | 新疆克拉玛依市乌尔禾地区 | 变形菌门 | 厚壁菌门、拟杆菌门、放线菌门、酸杆菌门、蓝细菌门 | [ |
新疆塔县、温宿县、阜康地区和青河县境内 | 拟杆菌门、放线菌门、变形菌门 | 厚壁菌门、绿弯菌门、芽单胞菌门、蓝细菌门、浮霉菌门 | [ | |
2019年 | 新疆石河子市玛纳斯河流域 | 放线菌门、变形菌门 | 绿弯菌门、酸杆菌门、芽单胞菌门、拟杆菌门、蓝细菌门、浮霉菌门、厚壁菌门 | [ |
Table 1 Microbial community composition characteristics of saline-alkali soils in different study regions
时间 | 研究区 | 土壤微生物优势菌群 | 其他菌群 | 参考文献 |
---|---|---|---|---|
2012年 | 甘肃省河西走廊 | 变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes) | 酸杆菌门(Acidobacteria)、浮霉菌门(Planctomycetes)、绿弯菌门(Chloroflexi)、芽单胞菌门(Gemmatimonadetes)、厚壁菌门(Firmicutes)、疣微菌门(Verrucomicrobia)、装甲菌门(Armatimonadetes)、绿菌门(Chlorobi)、蓝细菌门(Cyanobacteria)、硝化螺菌门(Nitrospira)、广古菌门(Euryarchaeota)、泉古菌门(Crenarchaeota) | [ |
宁夏银北地区 | 变形菌门 | 拟杆菌门、放线菌门、厚壁菌门、广古菌门、芽单胞菌门、酸杆菌门、蓝细菌门、浮霉菌门、绿弯菌门、疣微菌门、梭杆菌门(fusobacteria) | [ | |
2017年 | 宁夏银北西大滩 | 厚壁菌门、变形菌门、放线菌门 | 拟杆菌门、芽单胞菌门、酸杆菌门、疣微菌门、绿弯菌门 | [ |
2018—2019年 | 新疆克拉玛依市乌尔禾地区 | 变形菌门 | 厚壁菌门、拟杆菌门、放线菌门、酸杆菌门、蓝细菌门 | [ |
新疆塔县、温宿县、阜康地区和青河县境内 | 拟杆菌门、放线菌门、变形菌门 | 厚壁菌门、绿弯菌门、芽单胞菌门、蓝细菌门、浮霉菌门 | [ | |
2019年 | 新疆石河子市玛纳斯河流域 | 放线菌门、变形菌门 | 绿弯菌门、酸杆菌门、芽单胞菌门、拟杆菌门、蓝细菌门、浮霉菌门、厚壁菌门 | [ |
土壤元素循环 | 功能微生物 | 作用 | 参考文献 |
---|---|---|---|
碳循环 | 子囊菌 | 通过分泌全纤维素酶来降解植物凋落物 | [ |
担子菌 | 分解复杂的有机化合物,并促进农业土壤中的养分汲取和分解 | ||
纤维素分解菌 | 参与植物残体中含碳化合物(纤维素)的分解 | [ | |
氮循环 | 氨氧化细菌 | 影响硝化作用 | [ |
磷循环 | 溶磷菌 | 通过提高磷对根部的可用性,促进植物营养的平衡 | — |
解磷菌 | 分泌有机酸,降低根际土壤的pH,缓解盐胁迫 | [ | |
硫循环 | 硫氧化细菌 | 进行硫元素的转化,生成的硫酸中和盐碱土中的OH-,降低土壤pH | [ |
钾循环 | 肠杆菌属 | 具有解钾的能力,有利于植物生长 | [ |
木糖氧化杆菌 | |||
微小杆菌属 | |||
钠循环 | 丛枝菌根真菌 | 协助植物进行钠元素转化,降低植物体内钠素含量,减轻盐碱土中植物所受的盐胁迫 | [ |
Table 2 The role of functional microorganisms in the cycling of each element in saline-alkali soils in arid zones
土壤元素循环 | 功能微生物 | 作用 | 参考文献 |
---|---|---|---|
碳循环 | 子囊菌 | 通过分泌全纤维素酶来降解植物凋落物 | [ |
担子菌 | 分解复杂的有机化合物,并促进农业土壤中的养分汲取和分解 | ||
纤维素分解菌 | 参与植物残体中含碳化合物(纤维素)的分解 | [ | |
氮循环 | 氨氧化细菌 | 影响硝化作用 | [ |
磷循环 | 溶磷菌 | 通过提高磷对根部的可用性,促进植物营养的平衡 | — |
解磷菌 | 分泌有机酸,降低根际土壤的pH,缓解盐胁迫 | [ | |
硫循环 | 硫氧化细菌 | 进行硫元素的转化,生成的硫酸中和盐碱土中的OH-,降低土壤pH | [ |
钾循环 | 肠杆菌属 | 具有解钾的能力,有利于植物生长 | [ |
木糖氧化杆菌 | |||
微小杆菌属 | |||
钠循环 | 丛枝菌根真菌 | 协助植物进行钠元素转化,降低植物体内钠素含量,减轻盐碱土中植物所受的盐胁迫 | [ |
土壤理化 因子 | 微生物指标 | 对微生物的影响 | 参考文献 |
---|---|---|---|
有机质 | 微生物数量 | 土壤有机质是土壤微生物生命活动所需养分和能量的主要来源,土壤有机质含量的增加有利于微生物的生长 | [ |
有机碳 | 微生物多样性 | [ | |
总氮 | 微生物数量、微生物多样性 | 氮的增加可以刺激不同种类微生物的生长,从而增加环境中微生物的多样性 | [ |
硝态氮 | 微生物数量 | [ | |
铵态氮 | 微生物数量 | [ | |
速效钾 | 微生物数量 | 钾和磷是微生物生长所必需的营养元素,可以通过提高酶的活性促进微生物生长 | [ |
总磷 | 微生物多样性 | [ | |
有效磷 | 微生物数量 | 土壤有效磷是土壤中可被吸收利用的磷素,直接影响土壤微生物对磷的利用,与土壤微生物数量密切相关 | [ |
pH | 微生物数量 | 土壤pH增加可能阻碍微生物生长,但有利于耐盐碱微生物的存活 | [ |
微生物多样性 | 在盐碱环境中,pH增加会导致土壤板结,通气不良,不利于微生物生长 | [ | |
含水量 | 微生物数量 | 土壤含水量通过影响土壤通气性间接影响微生物数量 | [ |
微生物多样性 | 充足的土壤水分条件可以避免水分胁迫对微生物负面影响。土壤水分能够显著影响微生物的多样性,并增加微生物自身对水分的抵抗力 | [ | |
Na+、Cl-、SO | 微生物数量 | 一些耐盐微生物受到的影响较小,甚至随着土壤中盐离子含量的增加而促进其生长 | [ |
电导率 | 微生物多样性 | 高浓度的盐会改变土壤溶液的渗透和基质潜力,从而抑制微生物的生长 | [ |
容重 | 微生物多样性 | 随着土壤容重的增加,土壤变得紧实,孔隙减少,降低了土壤持水能力并抑制了微生物的生长 | [ |
Table 3 Soil physicochemical factors affecting microorganisms in saline-alkali soils
土壤理化 因子 | 微生物指标 | 对微生物的影响 | 参考文献 |
---|---|---|---|
有机质 | 微生物数量 | 土壤有机质是土壤微生物生命活动所需养分和能量的主要来源,土壤有机质含量的增加有利于微生物的生长 | [ |
有机碳 | 微生物多样性 | [ | |
总氮 | 微生物数量、微生物多样性 | 氮的增加可以刺激不同种类微生物的生长,从而增加环境中微生物的多样性 | [ |
硝态氮 | 微生物数量 | [ | |
铵态氮 | 微生物数量 | [ | |
速效钾 | 微生物数量 | 钾和磷是微生物生长所必需的营养元素,可以通过提高酶的活性促进微生物生长 | [ |
总磷 | 微生物多样性 | [ | |
有效磷 | 微生物数量 | 土壤有效磷是土壤中可被吸收利用的磷素,直接影响土壤微生物对磷的利用,与土壤微生物数量密切相关 | [ |
pH | 微生物数量 | 土壤pH增加可能阻碍微生物生长,但有利于耐盐碱微生物的存活 | [ |
微生物多样性 | 在盐碱环境中,pH增加会导致土壤板结,通气不良,不利于微生物生长 | [ | |
含水量 | 微生物数量 | 土壤含水量通过影响土壤通气性间接影响微生物数量 | [ |
微生物多样性 | 充足的土壤水分条件可以避免水分胁迫对微生物负面影响。土壤水分能够显著影响微生物的多样性,并增加微生物自身对水分的抵抗力 | [ | |
Na+、Cl-、SO | 微生物数量 | 一些耐盐微生物受到的影响较小,甚至随着土壤中盐离子含量的增加而促进其生长 | [ |
电导率 | 微生物多样性 | 高浓度的盐会改变土壤溶液的渗透和基质潜力,从而抑制微生物的生长 | [ |
容重 | 微生物多样性 | 随着土壤容重的增加,土壤变得紧实,孔隙减少,降低了土壤持水能力并抑制了微生物的生长 | [ |
1 | Yao R, Gao Q, Liu Y,et al.Deep vertical rotary tillage mitigates salinization hazards and shifts microbial community structure in salt-affected anthropogenic-alluvial soil[J].Soil and Tillage Research,2023,227:105627. |
2 | Li J, Pu L, Han M,et al.Soil salinization research in China: advances and prospects[J].Journal of Geographical Sciences,2014,24:943-960. |
3 | Qadir M, Quillérou E, Nangia V,et al.Economics of salt-induced land degradation and restoration[J].Natural Resources Forum,2014,38(4):282-295. |
4 | Han Q, Fu Y, Qiu R,et al.Carbon amendments shape the bacterial community structure in salinized farmland soil[J].Microbiology Spectrum,2023,11(1):e01012-22. |
5 | 董心亮,王金涛,田柳,等.盐渍化土壤团聚体和微生物与有机质关系研究进展[J].中国生态农业学报(中英文),2023,31(3):364-372. |
6 | 赵欣悦,席海洋,赵静,等.阿拉善地区土壤盐渍化的遥感反演及分布特征[J].中国沙漠,2023,43(1):27-36. |
7 | 杨劲松,姚荣江.我国盐碱地的治理与农业高效利用[J].中国科学院院刊,2015,30():257-265. |
8 | 丁建丽,陈文倩,陈芸. 干旱区土壤盐渍化灾害预警——以渭-库绿洲为例[J]. 中国沙漠,2016,36(4):1079-1086. |
9 | Hassani A, Azapagic A, Shokri N.Global predictions of primary soil salinization under changing climate in the 21st century[J].Nature Communications,2021,12(1):6663. |
10 | Hassani A, Azapagic A, Shokri N.Predicting long-term dynamics of soil salinity and sodicity on a global scale[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(52):33017-33027. |
11 | 杨航宇,刘艳梅,罗广元,等. 荒漠区食细菌线虫对生物土壤结皮下土壤微生物量的影响[J]. 中国沙漠,2021,41(6):120-125. |
12 | 王亚妮,胡宜刚,王增如,等. 开垦对阿拉尔绿洲盐渍化荒漠土壤微生物群落的影响[J]. 中国沙漠,2021,41(6):126-137. |
13 | Zhang G, Jia J, Zhao Q,et al.Seasonality and assembly of soil microbial communities in coastal salt marshes invaded by a perennial grass[J].Journal of Environmental Management,2023,331:117247. |
14 | Manzoni S, Schimel J P, Porporato A.Responses of soil microbial communities to water stress: results from a meta-analysis[J].Ecology,2012,93(4):930-938. |
15 | Qin Y, Druzhinina I S, Pan X Y,et al.Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J].Biotechnology Advances,2016,34(7):1245-1259. |
16 | 刘寄陵.试论西北内陆盐渍土的积盐特点与改良途径[J].土壤通报,1981,12(4):6-9. |
17 | 刘虎俊.河西走廊盐渍土的积盐特点及其改良途径[J].甘肃科技,1996(6):2-3. |
18 | 顾国安.新疆盐渍化土壤的形成及其防治[J].新疆地理,1984(4):1-16. |
19 | 樊自立,马英杰,马映军.中国西部地区的盐渍土及其改良利用[J].干旱区研究,2001(3):1-6. |
20 | Huang J P, Yu H P, Guan X D,et al.Accelerated dryland expansion under climate change[J].Nature Climate Change,2016,6(2):166-171. |
21 | 牛世全,杨建文,胡磊,等.河西走廊春季不同盐碱土壤中微生物数量、酶活性与理化因子的关系[J].微生物学通报,2012,39(3):416-427. |
22 | 王银山,张燕,谢辉,等.艾比湖湿地不同盐碱环境土壤微生物群落特征分析[J].干旱区资源与环境,2009,23(5):133-137. |
23 | 李海云,牛世全,孔维宝,等.河西走廊石羊河下游地区盐碱土中放线菌多样性:以民勤县为例[J].中国环境科学,2015,35(6):1805-1813. |
24 | 罗明,邱沃.新疆平原荒漠盐渍草地土壤微生物生态分布的研究[J].中国草地,1995(5):29-33. |
25 | Chen L J, Li C S, Feng Q,et al.Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China[J].Science of the Total Environment,2017,598:64-70. |
26 | Zhang K P, Shi Y, Cui X Q,et al.Salinity is a key determinant for soil microbial communities in a desert ecosystem[J].Msystems,2019,4(1):e00225-18. |
27 | 张彬,何红波,白震,等.保护性耕作对土壤微生物特性和酶活性的影响[J].土壤通报,2010,41(1):230-236. |
28 | 景宇鹏,李跃进,年佳乐,等.土默川平原不同盐渍化程度土壤微生物生态特征研究[J].生态环境学报,2013,22(7):1153-1159. |
29 | 王国栋,褚贵新,刘瑜,等.干旱绿洲长期微咸地下水灌溉对棉田土壤微生物量影响[J].农业工程学报,2009(11):44-48. |
30 | 路海玲,孟亚利,周玲玲,等.盐胁迫对棉田土壤微生物量和土壤养分的影响[J].水土保持学报,2011,25(1):197-201. |
31 | Batra L, Manna M C.Dehydrogenase activity and microbial biomass carbon in salt-affected soils of semiarid and arid regions[J].Arid Soil Research and Rehabilitation,1997,11(3):295-303. |
32 | 王敬宽,高枫舒,张楷悦,等.禾本科绿肥还田对盐碱地棉田土壤碳氮及微生物量碳氮的影响[J].中国生态农业学报(中英文),2023,31(3):396-404. |
33 | Muhammad S, Muller T, Joergensen R G.Decomposition of pea and maize straw in Pakistani soils along a gradient in salinity[J].Biology and Fertility of Soils,2006,43(1):93-101. |
34 | Mavi M S, Marschner P.Drying and wetting in saline and saline-sodic soils-effects on microbial activity,biomass and dissolved organic carbon[J].Plant and Soil,2012,355(1/2):51-62. |
35 | Chowdhury N, Marschner P, Burns R G.Soil microbial activity and community composition:Impact of changes in matric and osmotic potential[J].Soil Biology & Biochemistry,2011,43(6):1229-1236. |
36 | 牛世全,龙洋,李海云,等.应用IlluminaMiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J].微生物学通报,2017,44(9):2067-2078. |
37 | 郑贺云,黎志坤,李超,等.新疆阿克苏地区盐碱地细菌类群多样性及优势菌群分析[J].微生物学通报,2012,39(7):1031-1043. |
38 | Sand M, Stahl J, Waclawska I,et al.Identification of an osmo-dependent and an osmo-independent choline transporter in a cinetobacter baylyi:implications in osmostress protection and metabolic adaptation[J].Environmental Microbiology,2014,16(6):1490-1502. |
39 | 柏晓玉,何子璇,李雪,等.库木塔格沙漠土壤细菌多样性及具有群体感应抑制活性放线菌筛选[J].微生物学通报,2023,50(11):4770-4783. |
40 | Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández R J,et al.Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding[J].Extremophiles,2009,13:609-621. |
41 | Keshri J, Mody K, Jha B.Bacterial community structure in a semi-arid haloalkaline soil using culture independent method[J].Geomicrobiology Journal,2013,30(6):517-529. |
42 | Ishida T A, Nara K, Ma S R,et al.Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China[J].Mycorrhiza,2009,19(5):329-335. |
43 | Zandavalli R B, Dillenburg L R, de Souza P V D. Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum[J].Applied Soil Ecology,2004,25(3):245-255. |
44 | Sardinha M, Muller T, Schmeisky H,et al.Microbial performance in soils along a salinity gradient under acidic conditions[J].Applied Soil Ecology,2003,23(3):237-244. |
45 | Chowdhury N, Marschner P, Burns R.Response of microbial activity and community structure to decreasing soil osmotic and matric potential[J].Plant and Soil,2011,344(1/2):241-254. |
46 | 李明,毕江涛,王静.宁夏不同地区盐碱化土壤细菌群落多样性分布特征及其影响因子[J].生态学报,2020,40(4):1316-1330. |
47 | 代金霞,田平雅,张莹,等.银北盐渍化土壤中6种耐盐植物根际细菌群落结构及其多样性[J].生态学报,2019,39(8):2705-2714. |
48 | 王改萍,阿依古丽·托乎提,王茹,等.新疆乌尔禾地区盐渍土壤耐盐细菌多样性与群落结构研究[J].微生物学杂志,2021,41(2):17-26. |
49 | 迪力热巴·阿不都肉苏力.新疆四地盐碱土壤细菌及古菌多样性研究[D].乌鲁木齐:新疆师范大学,2022. |
50 | Yin F T, Zhang F H.Reclamation of abandoned saline-alkali soil increased soil microbial diversity and degradation potential[J].Plant and Soil,2022,477(1/2):521-538. |
51 | Rath K M, Rousk J.Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review[J].Soil Biology & Biochemistry,2015,81:108-123. |
52 | Yuan B C, Li Z Z, Liu H,et al.Microbial biomass and activity in salt affected soils under and conditions[J].Applied Soil Ecology,2007,35(2):319-328. |
53 | Saviozzi A, Cardelli R, Di Puccio R.Impact of salinity on soil biological activities:a laboratory experiment[J].Communications in Soil Science and Plant Analysis,2011,42(3):358-367. |
54 | 张体彬,展小云,冯浩.盐碱地土壤酶活性研究进展和展望[J].土壤通报,2017,48(2):495-500. |
55 | Garcia C, Hernandez T, Costa F.Potential use of dehydrogenase activity as an index of microbial activity in degraded soils[J].Communications in Soil Science and Plant Analysis,1997,28(1/2):123-134. |
56 | Tejada M, Garcia C, Gonzalez J L,et al.Use of organic amendment as a strategy for saline soil remediation:Influence on the physical,chemical and biological properties of soil[J].Soil Biology & Biochemistry,2006,38(6):1413-1421. |
57 | Frankenberger W T, Bingham F T.Influence of salinity on soil enzyme-activities[J].Soil Science Society of America Journal,1982,46(6):1173-1177. |
58 | Pan C C, Liu C A, Zhao H L,et al.Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization[J].European Journal of Soil Biology,2013,55:13-19. |
59 | 元炳成,刘权,黄伟,等.镁碱化盐土微生物生物量和土壤基础呼吸[J].土壤,2011,43(1):67-71. |
60 | 张丽华,陈亚宁,赵锐锋,等.温带荒漠中温度和土壤水分对土壤呼吸的影响[J].植物生态学报,2009,33(5):936-949. |
61 | 李典鹏,姚美思,孙涛.干旱区盐湖沿岸土壤呼吸特征及其影响因素[J].干旱区地理,2020,43(3):761-769. |
62 | 王飞,禇贵新,杨明凤,等.北疆绿洲不同盐分浓度梯度下土壤的生物活性及其功能多样性[J].土壤通报,2012,43(3):621-626. |
63 | 姚美思,朱新萍,张凯,等.表层覆盐对新疆巴里坤盐湖土壤呼吸特征的影响[J].气候变化研究进展,2016,12(6):538. |
64 | Haj-Amor Z, Araya T, Kim D G,et al.Soil salinity and its associated effects on soil microorganisms,greenhouse gas emissions,crop yield,biodiversity and desertification: a review[J].Science of the Total Environment,2022,843:156946. |
65 | Li X, Wang A C, Wan W J,et al.High salinity inhibits soil bacterial community mediating nitrogen cycling[J].Applied and Environmental Microbiology,2021,87(21):e01366-21. |
66 | 朱永官,王晓辉,杨小茹,等.农田土壤N2O产生的关键微生物过程及减排措施[J].环境科学,2014,35(2):792-800. |
67 | Setia R, Gottschalk P, Smith P,et al.Soil salinity decreases global soil organic carbon stocks[J].Science of the Total Environment,2013,465:267-272. |
68 | 张先富,李卉,洪梅,等.苏打盐碱土对氮转化的影响[J].吉林大学学报(地球科学版),2012,42(4):1145-1150. |
69 | Glass N L, Schmoll M, Cate J H D,et al.Plant cell wall deconstruction by Ascomycete Fungi[J].Annual Review of Microbiology,2013,67:477-498. |
70 | Syed K, Doddapaneni H, Subramanian V,et al. Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs)[J].Biochemical and Biophysical Research Communications,2010,399(4):492-497. |
71 | Ren M, Zhang Z F, Wang X L,et al.Diversity and contributions to nitrogen cycling and carbon fixation of soil salinity shaped microbial communitiesin Tarim Basin[J].Frontiers in Microbiology,2018,9:431. |
72 | 牛世全,杨婷婷,李君锋,等.盐碱土微生物功能群季节动态与土壤理化因子的关系[J].干旱区研究,2011,28(2):328-334. |
73 | 张慧敏.不同盐碱胁迫对土壤氮素转化和氨氧化微生物的影响[D].石河子:石河子大学,2018. |
74 | 姜焕焕,李嘉钦,陈刚,等.解磷微生物及其在盐碱土中的应用研究进展[J].土壤,2021,53(6):1125-1131. |
75 | 张静,王清,李晓茹,等.利用硫氧化细菌改良盐碱土[J].吉林大学学报(地球科学版),2009,39(1):147-151. |
76 | Prittesh P, Avnika P, Kinjal P,et al.Amelioration effect of salt-tolerant plant growth-promoting bacteria on growth and physiological properties of rice (Oryza sativa) under salt-stressed conditions[J].Archives of Microbiology,2020,202(9):2419-2428. |
77 | Zhang Y F, Wang P, Yang Y F,et al.Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline-alkaline soil: implication on vegetation restoration of extremely degraded land[J].Journal of Arid Environments,2011,75(9):773-778. |
78 | 胡山,牛世全,龙洋,等.河西走廊盐碱土壤中一株高效溶磷菌的鉴定及条件优化[J].微生物学通报,2017,44(2):358-365. |
79 | 赵国杰,牛世全,达文燕,等.四株无机解磷菌处理碱化土壤的理化性质及质量评价[J].土壤通报,2014,45(4):996-1002. |
80 | 李静,李明源,张甜,等.盐生植物解磷菌的筛选及促生效应研究[J].核农学报,2023,37(7):1470-1479. |
81 | 单双权.盐碱土改良方式对微生物多样性的影响和功能菌株筛选[D].北京:北京理工大学,2017. |
82 | 许芳芳.荒漠植物耐盐碱PGPR的分离筛选及其对盐胁迫下三种植物的促生效应和机理[D].呼和浩特:内蒙古农业大学,2017. |
83 | 刘少芳,王若愚. 植物根际促生细菌提高植物耐盐性研究进展[J]. 中国沙漠,2019,39(2):1-12. |
84 | 梁翔宇.盐生植物根际细菌群落多样性分析及耐盐碱促生菌的分离筛选[D].银川:宁夏大学,2022. |
85 | 韩泽宇.黄瓜高效耐盐促生菌株筛选鉴定及复合菌剂的制备[D].银川:宁夏大学,2019. |
86 | 牛世全,李渭娟,李海云,等.河西走廊盐碱土壤中抗马铃薯干腐病放线菌的筛选鉴定[J].西北师范大学学报(自然科学版),2017,53(2):94-98. |
87 | 强郁荣,李丽,封晔,等.黄河中上游半干旱区典型盐渍土中细菌耐盐性及产酶特性研究[J].西北农业学报,2006,15(3):65-68. |
88 | 李新.不同盐碱程度盐碱土壤微生物多样性研究[D].呼和浩特:内蒙古师范大学,2015. |
89 | 杨建文.甘肃河西地区不同盐碱土壤微生物数量、酶活及理化因子的研究[D].兰州:西北师范大学,2012. |
90 | Yang G, Jiang L, Li W,et al.Structural characteristics and assembly mechanisms of soil microbial communities under water-salt gradients in arid regions[J].Microorganisms,2023,11(4):1060. |
91 | Lauber C L, Hamady M, Knight R,et al.Pyrosequencing-based assessment of soil ph as a predictor of soil bacterial community structure at the continental scale[J].Applied and Environmental Microbiology,2009,75(15):5111-5120. |
92 | 霍朝晨,赵铎,何水清,等.盐碱土旱田改水田后其理化性质与微生物多样性差异[J].黑龙江八一农垦大学学报,2020,32(1):60-66. |
93 | 张唤,黄立华,王鸿斌,等.不同盐碱化草地土壤微生物差异及其与盐分和养分的关系[J].吉林农业大学学报,2016,38(6):703-709. |
94 | 时唯伟,支月娥,王景,等.土壤次生盐渍化与微生物数量及土壤理化性质研究[J].水土保持学报,2009,23(6):166-170. |
95 | 国春菲.土壤盐分和pH对滨海盐土土壤微生物多样性的影响[D].杭州:浙江农林大学,2013. |
96 | 章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002,11(2):140-143. |
97 | Li C, Jin L, Zhang C,et al.Destabilized microbial networks with distinct performances of abundant and rare biospheres in maintaining networks under increasing salinity stress[J].iMeta,2023,2(1):e79. |
98 | 靳正忠,雷加强,徐新文,等.塔里木沙漠公路防护林土壤微生物生物量与土壤环境因子的关系[J].应用生态学报,2009,20(1):51-57. |
99 | Oren A.Thermodynamic limits to microbial life at high salt concentrations[J].Environmental Microbiology,2011,13(8):1908-1923. |
100 | Ebrahimi A, Or D.Hydration and diffusion processes shape microbial community organization and function in model soil aggregates[J].Water Resources Research,2015,51(12):9804-9827. |
101 | Rath K M, Maheshwari A, Rousk J.The impact of salinity on the microbial response to drying and rewetting in soil[J].Soil Biology & Biochemistry,2017,108:17-26. |
102 | 曾路生,高岩,李俊良,等.寿光大棚土壤团聚体中交换性盐基离子组成与土壤团聚性关系[J].水土保持学报,2011,25(5):224-228. |
103 | 徐倩倩.不同种植年限设施土壤团聚体的变化特征及其影响因素研究[D].沈阳:沈阳农业大学,2020. |
104 | 曹良元.土壤团聚体组成及耕作方式对微生物区系分布的影响[D].重庆:西南大学,2009. |
105 | 王秋君,马艳,常志州.土壤团聚体对微生物及土传病原菌的影响[J].江苏农业学报,2015,31(4):946-950. |
106 | 窦旭,史海滨,李瑞平,等.盐渍化土壤剖面盐分与养分分布特征及盐分迁移估算[J].农业机械学报,2022,53(1):279-290. |
107 | 陈永金,靖淑慧,杜婷婷,等.滨海湿地原生灌草群落土壤养分与盐分关系[J].南水北调与水利科技,2015,13(5):895-900. |
108 | Zabaloy M C, Garland J L, Allegrini M,et al.Soil microbial community-level physiological profiling as related to carbon and nitrogen availability under different land uses[J].Pedosphere,2016,26(2):216-225. |
109 | Jia X Y, Zhong Y Q W, Liu J,et al.Effects of nitrogen enrichment on soil microbial characteristics:from biomass to enzyme activities[J]. Geoderma,2020,366:114256. |
110 | 朱婧,刘鼎,王珊,等.土壤养分及其化学计量特征对微生物碳利用效率的影响机制[J].广西师范大学学报(自然科学版),2022,40(5):376-387. |
[1] | Changxiang Pan, Qianru Ouyang, Mengyu Liao, Yu Fan, Qun Guo, Zhishan Zhang, Genan Wu, Yang Zhao, Lichao Liu, Yanxia Pan, Xinrong Li, Jianjun Qu, Songlin Mu, Shenggong Li. The applicability of ecological restoration technologies and sand industries to the deserted land in northwest arid region of China [J]. Journal of Desert Research, 2023, 43(5): 155-165. |
[2] | Xiaofang Jiang, Qingxia Xu, Hanchen Duan, Jie Liao, Pinglin Guo, Cuihua Huang, Xian Xue. Multi-model comparison on soil salinization inversion in Jingdian irrigation area of the Yellow River [J]. Journal of Desert Research, 2023, 43(5): 18-30. |
[3] | Dandan Li, Jiawen Li, Guanglei Gao, Ying Zhang, Yue Ren, Ye Liu, Peishan Zhao. Soil fungal community structure and functional characteristics associated with Pinussylvestris var. mongolica plantations in the Horqin Sandy Land [J]. Journal of Desert Research, 2023, 43(4): 241-251. |
[4] | Shanling Cheng, Haipeng Yu, Yu Ren, Jie Zhou, Hongyu Luo, Chenxi Liu, Yongqi Gong. Research progress on the influence mechanism of climate anomalies in arid and semi-arid regions in China [J]. Journal of Desert Research, 2023, 43(3): 21-35. |
[5] | Chunming Xin, Mingzhu He, Chengyi Li, Libin Zhang, Xinrong Li. A review of research progress on nitrous oxide emissions from desert soil and its driving factors [J]. Journal of Desert Research, 2023, 43(2): 184-194. |
[6] | Bing Jia, Jianhua Si, Zhibo Wu, Shi Qi, Lili Ma, Xinglin Zhu, Jie Qin, Funian Shi. Effects of seed pelleting in aerial seeding on vegetation and soil [J]. Journal of Desert Research, 2023, 43(2): 195-204. |
[7] | Yang Zhan, Shuang Wang, Jiping Chen, Yu Wang, Yupeng Wang. Evaluation of aquatic ecosystem health in the middle and upper reaches of the Heihe River based on macrobenthic integrity index [J]. Journal of Desert Research, 2023, 43(2): 271-280. |
[8] | Xinyue Zhao, Haiyang Xi, Jing Zhao, Kehua Ma, Wenju Cheng, Yuqing Chen. Inversion and spatial distribution characteristics of soil salinity in Alxa area, China [J]. Journal of Desert Research, 2023, 43(1): 27-36. |
[9] | Weicheng Luo, Wenzhi Zhao, Jiliang Liu, Jingyi Yang, Xuelian Bai, Lemin Wei, Yilin Feng. Distribution pattern and influencing factors of ground arthropods in coalmines restoration area of Qilian Mountain Nature Reserve, China [J]. Journal of Desert Research, 2022, 42(6): 165-175. |
[10] | Lin Li, Hu Liu, Chengpeng Sun, Wenzhi Zhao. Groundwater evapotranspiration estimation based on soil moisture and water table measurements [J]. Journal of Desert Research, 2022, 42(6): 277-287. |
[11] | Yibin Li, Guihong Shi, Guiying Shi, Hongyu Yang, Hui Li. Effects of seed soaking on the changes of soil Microorganism flora in the rhizosphere of Lanzhou lily [J]. Journal of Desert Research, 2022, 42(3): 251-260. |
[12] | Yanbin Hu, Qiang Zhang, Guoju Xiao, Zhengji Qiu, Yongping Li, Zhanqiang Guo. Effect of soil carbon, nitrgen and phosphate contents on maize production in semi-arid regions of China [J]. Journal of Desert Research, 2022, 42(3): 261-273. |
[13] | Xiaolong Zhao, Yuhong Xie, Xujun Ma, Shaokun Wang. Vegetation structure and its relationship with soil physicochemical properties in restoring sandy grassland in Horqin Sandy Land [J]. Journal of Desert Research, 2022, 42(2): 134-141. |
[14] | Yani Wang, Yigang Hu, Zengru Wang, Changsheng Li. Impacts of reclamation on salinization desert soil microbial community: a case study of Alar oasis [J]. Journal of Desert Research, 2021, 41(6): 126-137. |
[15] | Yonghong Feng, Rentao Liu, Jixian Liu, Jiayu Jiang, Yanjiao Bai, Zhixia Guo, Wenfan Wang, Anning Zhang. Distribution characteristics of arthropod community structure in Artemisia ordosica shrub canopy in desert area [J]. Journal of Desert Research, 2021, 41(5): 94-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech