Journal of Desert Research ›› 2022, Vol. 42 ›› Issue (6): 165-175.DOI: 10.7522/j.issn.1000-694X.2022.00049
Weicheng Luo1(), Wenzhi Zhao1(
), Jiliang Liu1, Jingyi Yang1,2, Xuelian Bai1,3, Lemin Wei1,3, Yilin Feng4
Received:
2021-11-11
Revised:
2022-03-23
Online:
2022-11-20
Published:
2023-01-09
Contact:
Wenzhi Zhao
CLC Number:
Weicheng Luo, Wenzhi Zhao, Jiliang Liu, Jingyi Yang, Xuelian Bai, Lemin Wei, Yilin Feng. Distribution pattern and influencing factors of ground arthropods in coalmines restoration area of Qilian Mountain Nature Reserve, China[J]. Journal of Desert Research, 2022, 42(6): 165-175.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00049
环境变量 | 修复区 | 毗邻区 |
---|---|---|
植物丰富度 | 1.67±0.33 | 4.67±0.88* |
植物盖度/% | 33.67±1.86 | 66.67±4.41** |
植物生物量/g | 57.34±7.31 | 149.27±12.94** |
土壤粗砂含量/% | 26.83±5.57 | 43.16±8.29* |
土壤细砂含量/% | 12.71±3.85 | 12.55±0.79ns |
土壤黏粉粒含量/% | 0.42±0.10 | 0.32±0.14ns |
土壤含水量/% | 10.70±0.003 | 10.32±0.01ns |
土壤pH | 8.70±0.29 | 8.20±0.19* |
土壤有机碳含量/(g·kg-1) | 17.00±7.24 | 121.60±21.01** |
土壤全氮含量/(g·kg-1) | 0.70±0.37 | 3.40±1.06* |
土壤全钾含量/(g·kg-1) | 41.60±13.18 | 46.80±1.64ns |
土壤全磷含量/(g·kg-1) | 0.50±0.19 | 0.60±0.06ns |
Table 1 Comparison of vegetation and soil environmental characteristics between typical coal mine restoration area and adjacent area in Qilian Mountain Nature Reserve
环境变量 | 修复区 | 毗邻区 |
---|---|---|
植物丰富度 | 1.67±0.33 | 4.67±0.88* |
植物盖度/% | 33.67±1.86 | 66.67±4.41** |
植物生物量/g | 57.34±7.31 | 149.27±12.94** |
土壤粗砂含量/% | 26.83±5.57 | 43.16±8.29* |
土壤细砂含量/% | 12.71±3.85 | 12.55±0.79ns |
土壤黏粉粒含量/% | 0.42±0.10 | 0.32±0.14ns |
土壤含水量/% | 10.70±0.003 | 10.32±0.01ns |
土壤pH | 8.70±0.29 | 8.20±0.19* |
土壤有机碳含量/(g·kg-1) | 17.00±7.24 | 121.60±21.01** |
土壤全氮含量/(g·kg-1) | 0.70±0.37 | 3.40±1.06* |
土壤全钾含量/(g·kg-1) | 41.60±13.18 | 46.80±1.64ns |
土壤全磷含量/(g·kg-1) | 0.50±0.19 | 0.60±0.06ns |
科名 | 进房沟 | 水磨沟 | 柳树沟 | 合计 | ||||
---|---|---|---|---|---|---|---|---|
修复区 | 毗邻区 | 修复区 | 毗邻区 | 修复区 | 毗邻区 | 修复区 | 毗邻区 | |
石蜈蚣科(Lithobiidae) | — | — | — | 1(0.3) | — | — | — | 1(0.1) |
蚰蜒科(Scutigeridae) | — | 1(0.4) | 1(0.2) | — | — | 1(0.3) | 1(0.1) | 2(0.2) |
硬体盲蛛科(Sclerosomatidae) | — | 29(12.3) | 15(3.3) | 2(0.6) | 6(1.7) | 51(15.6) | 21(1.8) | 82(9.3) |
管巢蛛科(Clubionidae) | — | 1(0.4) | 1(0.2) | — | — | — | 1(0.1) | 1(0.1) |
平腹蛛科(Gnaphosidae) | 16(4.6) | 6(2.6) | 15(3.3) | 5(1.5) | 16(4.5) | 6(1.8) | 47(4.1) | 17(1.9) |
狼蛛科(Lycosidae) | 21(6.1) | 4(1.7) | 12(2.6) | 23(7.1) | 10(2.8) | 8(2.5) | 43(3.7) | 35(4.0) |
球蛛科(Theridiidae) | — | — | 1(0.2) | — | 2(0.6) | 1(0.3) | 3(0.3) | 1(0.1) |
蟹蛛科(Thomisidae) | 1(0.3) | 2(0.9) | 1(0.2) | 8(2.5) | 3(0.8) | 10(3.1) | 5(0.4) | 20(2.3) |
跳蛛科(Salticidae) | — | — | 3(0.7) | — | — | — | 3(0.3) | — |
微蛛亚科(Erigoninae) | 4(1.2) | 2(0.9) | 17(3.7) | 3(0.9) | 12(3.4) | 1(0.3) | 33(2.8) | 6(0.7) |
绒螨科(Trombidiidae) | — | 14(6.0) | — | 2(0.6) | — | 2(0.6) | — | 18(2.0) |
潮虫科(Oniscidae) | — | 5(2.1) | — | 1(0.3) | 2(0.6) | 3(0.9) | 2(0.2) | 9(1.0) |
蝗科(Acrididae) | 83(24.0) | 48(20.4) | 10(2.2) | 22(6.8) | 54(15.2) | 57(17.5) | 147(12.7) | 127(14.4) |
石蚋科(Machilidae) | — | — | — | — | — | 3(0.9) | — | 3(0.3) |
蚁狮科(Myrmeleontidae) | — | — | 1(0.2) | — | — | — | 1(0.1) | — |
长蝽科(Lygaeidae) | — | 1(0.4) | — | — | 1(0.3) | — | 1(0.1) | 1(0.1) |
蝽科( Pentatomidae) | — | — | 5(1.1) | — | 2(0.6) | — | 7(0.6) | — |
猎蝽科(Reduviidae) | 3(0.9) | — | 2(0.4) | — | 2(0.6) | — | 7(0.6) | — |
叶蝉科(Cicadellidae) | 3(0.9) | 4(1.7) | 8(1.8) | 5(1.5) | 2(0.6) | 3(0.9) | 13(1.1) | 12(1.4) |
蚜科(Aphididae) | — | — | — | — | 16(4.5) | 1(0.3) | 16(1.4) | 1(0.1) |
虎甲科(Cicindelidae) | — | 1(0.4) | 2(0.4) | — | — | — | 2(0.2) | 1(0.1) |
步甲科(Carabidae) | 14(4.0) | 14(6.0) | 38(8.3) | 33(10.2) | 40(11.2) | 14(4.3) | 92(7.9) | 61(6.9) |
瓢甲科(Coccinellidae) | — | 1(0.4) | — | 1(0.3) | 3(0.8) | — | 3(0.3) | 2(0.2) |
阎甲科(Histeridae) | 1(0.3) | — | — | — | 1(0.3) | 3(0.9) | 2(0.2) | 3(0.3) |
隐翅虫科(Staphylinidae) | 13(3.8) | 3(1.3) | 21(4.6) | 4(1.2) | 10(2.8) | 6(1.8) | 44(3.8) | 13(1.5) |
象甲科(Curculionidae) | — | 7(3.0) | — | 9(2.8) | 1(0.3) | 1(0.3) | 1(0.1) | 17(1.9) |
叶甲科(Chrysomelidae) | — | 4(1.7) | — | 1(0.3) | 1(0.3) | 1(0.3) | 1(0.1) | 6(0.7) |
谷盗科(Trogossitidae) | — | — | — | — | 1(0.3) | — | 1(0.1) | — |
花金龟科(Cetoniidae) | — | — | — | — | 1(0.3) | — | 1(0.1) | — |
天牛科(Cerambycidae) | — | — | 1(0.2) | — | — | — | 1(0.1) | — |
芫青科(Meloidae) | — | — | 1(0.2) | — | 1(0.3) | — | 2(0.2) | — |
拟步甲科(Tenebrionidae) | 2(0.6) | 1(0.4) | 2(0.4) | 2(0.6) | 6(1.7) | 1(0.3) | 10(0.9) | 4(0.5) |
丸甲科(Byrrhidae) | — | — | — | 1(0.3) | — | — | — | 1(0.1) |
球蕈甲科(Leiodidae) | — | 1(0.4) | 1(0.2) | — | — | — | 1(0.1) | 1(0.1) |
食蚜蝇科(Syrphidae) | — | — | — | — | 1(0.3) | — | 1(0.1) | — |
夜蛾科(Noctuidae) | — | — | — | — | — | 1(0.3) | — | 1(0.1) |
蚁科(Formicidae) | 185(53.5) | 86(36.6) | 298(65.4) | 200(61.9) | 162(45.5) | 152(46.6) | 645(55.7) | 438(49.5) |
Table 2 Number of individuals and relative abundance of ground arthropods in different coal mine restoration areas and adjacent area
科名 | 进房沟 | 水磨沟 | 柳树沟 | 合计 | ||||
---|---|---|---|---|---|---|---|---|
修复区 | 毗邻区 | 修复区 | 毗邻区 | 修复区 | 毗邻区 | 修复区 | 毗邻区 | |
石蜈蚣科(Lithobiidae) | — | — | — | 1(0.3) | — | — | — | 1(0.1) |
蚰蜒科(Scutigeridae) | — | 1(0.4) | 1(0.2) | — | — | 1(0.3) | 1(0.1) | 2(0.2) |
硬体盲蛛科(Sclerosomatidae) | — | 29(12.3) | 15(3.3) | 2(0.6) | 6(1.7) | 51(15.6) | 21(1.8) | 82(9.3) |
管巢蛛科(Clubionidae) | — | 1(0.4) | 1(0.2) | — | — | — | 1(0.1) | 1(0.1) |
平腹蛛科(Gnaphosidae) | 16(4.6) | 6(2.6) | 15(3.3) | 5(1.5) | 16(4.5) | 6(1.8) | 47(4.1) | 17(1.9) |
狼蛛科(Lycosidae) | 21(6.1) | 4(1.7) | 12(2.6) | 23(7.1) | 10(2.8) | 8(2.5) | 43(3.7) | 35(4.0) |
球蛛科(Theridiidae) | — | — | 1(0.2) | — | 2(0.6) | 1(0.3) | 3(0.3) | 1(0.1) |
蟹蛛科(Thomisidae) | 1(0.3) | 2(0.9) | 1(0.2) | 8(2.5) | 3(0.8) | 10(3.1) | 5(0.4) | 20(2.3) |
跳蛛科(Salticidae) | — | — | 3(0.7) | — | — | — | 3(0.3) | — |
微蛛亚科(Erigoninae) | 4(1.2) | 2(0.9) | 17(3.7) | 3(0.9) | 12(3.4) | 1(0.3) | 33(2.8) | 6(0.7) |
绒螨科(Trombidiidae) | — | 14(6.0) | — | 2(0.6) | — | 2(0.6) | — | 18(2.0) |
潮虫科(Oniscidae) | — | 5(2.1) | — | 1(0.3) | 2(0.6) | 3(0.9) | 2(0.2) | 9(1.0) |
蝗科(Acrididae) | 83(24.0) | 48(20.4) | 10(2.2) | 22(6.8) | 54(15.2) | 57(17.5) | 147(12.7) | 127(14.4) |
石蚋科(Machilidae) | — | — | — | — | — | 3(0.9) | — | 3(0.3) |
蚁狮科(Myrmeleontidae) | — | — | 1(0.2) | — | — | — | 1(0.1) | — |
长蝽科(Lygaeidae) | — | 1(0.4) | — | — | 1(0.3) | — | 1(0.1) | 1(0.1) |
蝽科( Pentatomidae) | — | — | 5(1.1) | — | 2(0.6) | — | 7(0.6) | — |
猎蝽科(Reduviidae) | 3(0.9) | — | 2(0.4) | — | 2(0.6) | — | 7(0.6) | — |
叶蝉科(Cicadellidae) | 3(0.9) | 4(1.7) | 8(1.8) | 5(1.5) | 2(0.6) | 3(0.9) | 13(1.1) | 12(1.4) |
蚜科(Aphididae) | — | — | — | — | 16(4.5) | 1(0.3) | 16(1.4) | 1(0.1) |
虎甲科(Cicindelidae) | — | 1(0.4) | 2(0.4) | — | — | — | 2(0.2) | 1(0.1) |
步甲科(Carabidae) | 14(4.0) | 14(6.0) | 38(8.3) | 33(10.2) | 40(11.2) | 14(4.3) | 92(7.9) | 61(6.9) |
瓢甲科(Coccinellidae) | — | 1(0.4) | — | 1(0.3) | 3(0.8) | — | 3(0.3) | 2(0.2) |
阎甲科(Histeridae) | 1(0.3) | — | — | — | 1(0.3) | 3(0.9) | 2(0.2) | 3(0.3) |
隐翅虫科(Staphylinidae) | 13(3.8) | 3(1.3) | 21(4.6) | 4(1.2) | 10(2.8) | 6(1.8) | 44(3.8) | 13(1.5) |
象甲科(Curculionidae) | — | 7(3.0) | — | 9(2.8) | 1(0.3) | 1(0.3) | 1(0.1) | 17(1.9) |
叶甲科(Chrysomelidae) | — | 4(1.7) | — | 1(0.3) | 1(0.3) | 1(0.3) | 1(0.1) | 6(0.7) |
谷盗科(Trogossitidae) | — | — | — | — | 1(0.3) | — | 1(0.1) | — |
花金龟科(Cetoniidae) | — | — | — | — | 1(0.3) | — | 1(0.1) | — |
天牛科(Cerambycidae) | — | — | 1(0.2) | — | — | — | 1(0.1) | — |
芫青科(Meloidae) | — | — | 1(0.2) | — | 1(0.3) | — | 2(0.2) | — |
拟步甲科(Tenebrionidae) | 2(0.6) | 1(0.4) | 2(0.4) | 2(0.6) | 6(1.7) | 1(0.3) | 10(0.9) | 4(0.5) |
丸甲科(Byrrhidae) | — | — | — | 1(0.3) | — | — | — | 1(0.1) |
球蕈甲科(Leiodidae) | — | 1(0.4) | 1(0.2) | — | — | — | 1(0.1) | 1(0.1) |
食蚜蝇科(Syrphidae) | — | — | — | — | 1(0.3) | — | 1(0.1) | — |
夜蛾科(Noctuidae) | — | — | — | — | — | 1(0.3) | — | 1(0.1) |
蚁科(Formicidae) | 185(53.5) | 86(36.6) | 298(65.4) | 200(61.9) | 162(45.5) | 152(46.6) | 645(55.7) | 438(49.5) |
Fig.1 Non-metric multidimensional scaling (NMDS) plots indicating 2-dimensional distances of ground arthropods assemblage in different coal mine restoration areas and adjacent area
因素 | 活动密度 | 类群丰富度 | 多样性指数 | 均匀度指数 | ||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | |
生境 | 3.10 | 0.050 | 0.87 | 0.425 | 4.30 | 0.017 | 9.46 | <0.001 |
微生境 | 7.05 | 0.009 | 2.51 | 0.117 | 0.12 | 0.735 | 8.49 | 0.005 |
生境×微生境 | 0.85 | 0.433 | 2.23 | 0.111 | 2.54 | 0.085 | 1.56 | 0.216 |
Table 3 Results of two-factor ANOVA analysis of the effect of coal mine location and restoration on community characteristics of ground arthropods
因素 | 活动密度 | 类群丰富度 | 多样性指数 | 均匀度指数 | ||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | |
生境 | 3.10 | 0.050 | 0.87 | 0.425 | 4.30 | 0.017 | 9.46 | <0.001 |
微生境 | 7.05 | 0.009 | 2.51 | 0.117 | 0.12 | 0.735 | 8.49 | 0.005 |
生境×微生境 | 0.85 | 0.433 | 2.23 | 0.111 | 2.54 | 0.085 | 1.56 | 0.216 |
Fig.2 Comparison of activity density, groups richness, diversity index and evenness index of ground arthropods in different coal mine restoration areas and adjacent areas
因素 | 捕食性类群 | 植食性类群 | 其他类群 | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
生境 | 3.10 | <0.001 | 7.30 | <0.001 | 3.15 | <0.007 |
微生境 | 7.61 | <0.001 | 2.24 | 0.05 | 4.04 | 0.010 |
生境×微生境 | 4.19 | <0.001 | 1.77 | 0.07 | 0.60 | 0.74 |
Table 4 Results of two-factor PERMANOVA of the effect of coal mine location and restoration on predators, herbivores, others of ground arthropods in coal mine
因素 | 捕食性类群 | 植食性类群 | 其他类群 | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
生境 | 3.10 | <0.001 | 7.30 | <0.001 | 3.15 | <0.007 |
微生境 | 7.61 | <0.001 | 2.24 | 0.05 | 4.04 | 0.010 |
生境×微生境 | 4.19 | <0.001 | 1.77 | 0.07 | 0.60 | 0.74 |
Fig.3 Comparison of activity density and groups richness of predators, herbivores and other groups on ground arthropods in different coal mine restoration areas and adjacent areas
解释变量 | 解释量/% | 贡献率/% | F | P |
---|---|---|---|---|
捕食性类群 | ||||
草本盖度 | 1.73 | 5.70 | 0.60 | 0.686 |
草本物种数 | 3.98 | 13.10 | 1.60 | 0.184 |
土壤粗砂含量 | 1.89 | 6.30 | 0.70 | 0.634 |
土壤有机质含量 | 13.58 | 45.00 | 4.20 | 0.006 |
土壤全氮含量 | 4.76 | 15.70 | 1.70 | 0.126 |
土壤全钾含量 | 4.25 | 14.10 | 1.40 | 0.230 |
植食性类群 | ||||
草本盖度 | 0.67 | 4.00 | 0.30 | 0.813 |
草本物种数 | 6.25 | 37.70 | 3.00 | 0.037 |
土壤粗砂含量 | 5.33 | 32.20 | 3.30 | 0.022 |
土壤有机质含量 | 0.99 | 6.00 | 0.60 | 0.622 |
土壤全氮含量 | 2.44 | 14.70 | 1.60 | 0.208 |
土壤全钾含量 | 0.92 | 5.50 | 0.50 | 0.787 |
Table 5 pRDA analysis determined the relative contribution rates of six vegetation and soil environmental factors to the distribution of predatory and herbivorous ground arthropods
解释变量 | 解释量/% | 贡献率/% | F | P |
---|---|---|---|---|
捕食性类群 | ||||
草本盖度 | 1.73 | 5.70 | 0.60 | 0.686 |
草本物种数 | 3.98 | 13.10 | 1.60 | 0.184 |
土壤粗砂含量 | 1.89 | 6.30 | 0.70 | 0.634 |
土壤有机质含量 | 13.58 | 45.00 | 4.20 | 0.006 |
土壤全氮含量 | 4.76 | 15.70 | 1.70 | 0.126 |
土壤全钾含量 | 4.25 | 14.10 | 1.40 | 0.230 |
植食性类群 | ||||
草本盖度 | 0.67 | 4.00 | 0.30 | 0.813 |
草本物种数 | 6.25 | 37.70 | 3.00 | 0.037 |
土壤粗砂含量 | 5.33 | 32.20 | 3.30 | 0.022 |
土壤有机质含量 | 0.99 | 6.00 | 0.60 | 0.622 |
土壤全氮含量 | 2.44 | 14.70 | 1.60 | 0.208 |
土壤全钾含量 | 0.92 | 5.50 | 0.50 | 0.787 |
Fig.4 The RDA two-dimensional ordination diagram of predators (A) and herbivores (B) and main environmental factors in typical coal mine restoration area and adjacent area. ○ represents the restoration area and △ represents the adjacent area
1 | 生态环境部. “美丽中国先锋榜(24)|甘肃整治祁连山国家级自然保护区生态环境破坏问题”[Z].2019-09-20. |
2 | 卫智军,李青丰,贾鲜艳,等.矿业废弃地的植被恢复与重建[J].水土保持学报,2003(4):172-175. |
3 | 郝蓉,白中科,赵景逵,等.黄土区大型露天煤矿废弃地植被恢复过程中的植被动态[J].生态学报,2003,33(8):1470-1476. |
4 | 郭逍宇,张金屯,宫辉力,等.安太堡矿区复垦地植被恢复过程多样性变化[J].生态学报,2005,25(4):763-770. |
5 | 姚虹,马建军,张树礼.煤矿复垦地不同恢复阶段植物群落功能群结构与生物多样性变化[J].西北植物学报,2012,32(5):1013-1020. |
6 | 朱琦,聂欣然,张勇,等.华北地区煤矸石山生态修复草本植物种优选[J].北京林业大学学报,2021,43(8):90-97. |
7 | 秦文展.露天铝土矿生态恢复过程中生物多样性研究[D].长沙:中南大学,2011. |
8 | 李琦峰.肃南县马苏河矿区生态环境调研评估与修复方案研究[D].兰州:兰州大学,2019. |
9 | 董玉锟.内蒙露天煤矿排土场边坡抗冲性及减水减沙效益研究[D].陕西杨凌:西北农林科技大学,2015. |
10 | 叶凌枫.不同修复措施对矿区土壤肥力质量的影响及评价[D].西安:长安大学,2016. |
11 | 魏光普.轻稀土尾矿库周边植被恢复模式及其土壤修复效应研究[D].呼和浩特:内蒙古农业大学,2019. |
12 | 刘莉莉,姚德利,文屹,等.鞍山铁矿废弃地生态恢复与重建中土壤动物群落研究[J].土壤通报,2009,40(2):248-251. |
13 | 李娜,张雪萍,张利敏.三种温带森林大型土壤动物群落结构的时空动态[J].生态学报,2013,33(19):6236-6245. |
14 | 辛未冬,刘华煜,杨轶萌,等.复垦对煤矸石山地表节肢动物群落特征的影响[J].生态学杂志,2021,40(7):2213-2222. |
15 | 殷秀琴,宋博,董炜华,等.我国土壤动物生态地理研究进展[J].地理学报,2010,65(1):91-102. |
16 | 李红涛.不同植被配置下矿区大型土壤动物群落结构研究[D].北京:中国地质大学,2016. |
17 | 郑乐怡,归鸿.昆虫分类[M].南京:南京师范大学出版社,1999. |
18 | Song D X, Zhu M S, Chen J.The Spiders of China[M].Shijiazhuang:Hebei Science and Technology Publishing House,1999. |
19 | 任国栋,于有志.中国荒漠半荒漠的拟步甲科昆虫[J].保定:河北大学出版社,1999. |
20 | 梁宏斌,虞佩玉.中国捕食粘虫的步甲种类检索[J].昆虫天敌,2000,22(4):160-167. |
21 | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000. |
22 | Clarke K R, Gorley R N.PRIMER V6:User Manual/Tutorial(Plymouth Routines in Multivariate Ecological Research)[M].Plymouth,UK:Primer-E Ltd,2006. |
23 | Ter Braak C J F, Smilauer P.Canoco reference manual and user's guide:software for ordination (version 5.0)[Z].Ithaca,USA:Microcomputer Power,2012. |
24 | Jitendra A, Kumar M S.Assessment of soil carbon pool,carbon sequestration and soil CO2 flux in unreclaimed and reclaimed coal mine spoils[J].Environmental Earth Sciences,2018,77(1):1-13. |
25 | 王丽艳,韩有志,张成梁,等.不同植被恢复模式下煤矸石山复垦土壤性质及煤矸石风化物的变化特征[J].生态学报,2011,31(21):6429-6441. |
26 | 李晓莹,徐学华,郭江,等.不同造林树种对铁尾矿基质理化性质和土壤动物的影响[J].生态学报,2014,34(20):5746-5757. |
27 | 田佳榕,马伟波,戚旭东,等.内蒙古某铁矿尾矿库生态修复区的植被恢复效果[J].农业资源与环境学报,2020,37(4):601-608. |
28 | 陶贵鑫,周宏轩,孙婧,等.关闭/废弃煤矿的生态修复研究进展及展望[J].中国矿业,2021,30(5):10-19. |
29 | 杜华栋,曹祎晨,聂文杰,等.黄土沟壑区采煤塌陷地人工与自然植被恢复下土壤性质演变特征[J].煤炭学报,2021,46(5):1641-1649. |
30 | 王金满,杨睿璇,白中科.草原区露天煤矿排土场复垦土壤质量演替规律与模型[J].农业工程学报,2012,28(14):229-235. |
31 | 谢伟,钱晓彤,王东丽,等.鄂尔多斯矿区排土场苜蓿恢复地土壤种子库的演变特征[J].中国水土保持科学,2020,18(4):29-37. |
32 | 温明霞,邵明安,周蓓蓓.马家塔露天煤矿复垦区不同土地利用类型的土壤水分入渗过程研究[J].水土保持研究,2009,16(4):170-173. |
33 | 崔艳,白中科,李晋川,等.露天煤矿不同恢复阶段大型土壤动物群落结构[J].生态学杂志,2007,26(4):607-610. |
34 | 王金满,郭凌俐,白中科,等.黄土区露天煤矿排土场复垦后土壤与植被的演变规律[J].农业工程学报,2013,29(21):223-232. |
35 | Cristescu R H, Frère C, Banks P B.A review of fauna in mine rehabilitation in Australia:current state and future directions[J].Biological Conservation,2012,149(1):60-72. |
36 | Kędzior R, Szwalec A, Mundała P,et al.Ground beetle (Coleoptera,Carabidae) life history traits as indicators of habitat recovering processes in postindustrial areas[J].Ecological Engineering,2020,142:105615. |
37 | Wanner M, Dunger W.Primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in eastern Germany[J].European Journal of Soil Biology,2002,38(2):137-143. |
38 | 林英华,宋百敏,韩茜,等.北京门头沟废弃采石矿区地表土壤动物群落多样性[J].生态学报,2007,27(11):4832-4839. |
39 | 王军,李红涛,白中科,等.矿区不同复垦模式下大型土壤动物功能类群及其分布研究:以山西省平朔矿区为例[J].中国土地科学,2017,31(11):83-90. |
40 | Rufaut C G, Clearwater S, Craw D.Recolonization and recovery of soil invertebrate assemblages at an inactive coal mine in southern New Zealand[J].New Zealand Natural Sciences,2010,35:17-30. |
41 | Hendrychová M, Šálek M, Tajovský K,et al.Soil properties and species richness of invertebrates on afforested sites after brown coal mining[J].Restoration Ecology,2012,20(5):561-567. |
42 | Topp W, Simon M, Kautz G,et al.Soil fauna of a reclaimed lignite open-cast mine of the Rhineland:improvement of soil quality by surface pattern[J].Ecological Engineering,2001,17(2/3):307-322. |
43 | 路凯亮,腾悦,李俊兰.围封对内蒙古退化典型草原大型土壤动物群落多样性的影响[J].生态学杂志,2018,37(9):2680-2689. |
44 | 朱永恒,沈非,余健,等.铜尾矿废弃地土壤动物多样性特征[J].生态学报,2013,33(5):1495-1505. |
45 | 崔艳,张继栋,白中科,等.露天煤矿不同恢复植被大型土壤动物群落比较[J].生态环境,2008,17(3):1024-1027. |
[1] | Yushuo Zhang, Xuerui Shen, Renjing Sui, Jie Bao, Zhonglei Yu, Lin Zhao, Xuebin Zhang. Multi-scale analysis of spatial pattern and the influencing factors of A-grade scenic spots in the Yellow River Basin [J]. Journal of Desert Research, 2022, 42(6): 103-115. |
[2] | Wen Zhang, Dingding Du, Zhiwen Li, Wangyang Wu, Xiangjie Li, Yonghui Bai. Grain size characteristics of sediments in sandy land around the Poyang Lake and its influencing factors [J]. Journal of Desert Research, 2022, 42(5): 122-132. |
[3] | Qianqian Wu, Xiao Zhang, Shuxing Xu, Xiaohui Yang, Yanshu Liu, Hanzhi Li, Zhongjie Shi. Climatic responses of NDVI and tree growth in the arid areas of inland Asia and their influencing factors [J]. Journal of Desert Research, 2022, 42(4): 1-10. |
[4] | Yibin Li, Guihong Shi, Guiying Shi, Hongyu Yang, Hui Li. Effects of seed soaking on the changes of soil Microorganism flora in the rhizosphere of Lanzhou lily [J]. Journal of Desert Research, 2022, 42(3): 251-260. |
[5] | Xiaolong Zhao, Yuhong Xie, Xujun Ma, Shaokun Wang. Vegetation structure and its relationship with soil physicochemical properties in restoring sandy grassland in Horqin Sandy Land [J]. Journal of Desert Research, 2022, 42(2): 134-141. |
[6] | Lei Kang, Zhaoping Yang, Fang Han. Analysis of structural characteristics and spatial distribution of the intangible cultural heritage in Xinjiang and its influencing factor [J]. Journal of Desert Research, 2022, 42(1): 158-166. |
[7] | Cheng Zhou, Binghua Liu, Xuhong Zhang, Juan Tian, Lin Zhou. Spatial distribution characteristics and influencing factors of heritage conservation units in the Yellow River Basin [J]. Journal of Desert Research, 2021, 41(6): 10-20. |
[8] | Yani Wang, Yigang Hu, Zengru Wang, Changsheng Li. Impacts of reclamation on salinization desert soil microbial community: a case study of Alar oasis [J]. Journal of Desert Research, 2021, 41(6): 126-137. |
[9] | Zhiwei Ding, Rui Zhao, Zihan Jian, Yiwei Meng, Gaisu Zhang. Economics spatial pattern and its influencing factors of Yellow River Basin at town scale from the perspective of urban-rural integration [J]. Journal of Desert Research, 2021, 41(6): 195-204. |
[10] | Lizhu Xing, Fangmin Zhang, Kaicheng Xing, Yunpeng Li, Qi Lu, Feifei Lu. Change of soil wind erosion and attribution in Bayannur, Inner Mongolia based on the Revised Wind Erosion Equation [J]. Journal of Desert Research, 2021, 41(5): 111-119. |
[11] | Yonghong Feng, Rentao Liu, Jixian Liu, Jiayu Jiang, Yanjiao Bai, Zhixia Guo, Wenfan Wang, Anning Zhang. Distribution characteristics of arthropod community structure in Artemisia ordosica shrub canopy in desert area [J]. Journal of Desert Research, 2021, 41(5): 94-102. |
[12] | Zeyu Teng, Shengchun Xiao, Xiaohong Chen, Chao Han. The soil bacterial condition beneath five shrub species in the central Alxa [J]. Journal of Desert Research, 2021, 41(4): 34-44. |
[13] | Longqiang Zhu, Xiaoyun Wang, Jiamin Liu, Yaowen Xie. Distribution and natural environment background of sites in Hexi region,Gansu,China [J]. Journal of Desert Research, 2021, 41(4): 121-128. |
[14] | Gaopeng Sun, Xianfeng Liu, Xiaohong Wang, Shuangshuang Li. Changes in vegetation coverage and its influencing factors across the Yellow River Basin during 2001-2020 [J]. Journal of Desert Research, 2021, 41(4): 205-212. |
[15] | Lichao Zhuang, Naiang Wang, Xunhe Zhang, Liqiang Zhao, Xianbao Su. Analysis on the difference of the spatial model of lake ice freezing and melting in the Badain Jaran Desert [J]. Journal of Desert Research, 2021, 41(3): 214-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech