img

官方微信

高级检索

中国沙漠 ›› 2021, Vol. 41 ›› Issue (6): 54-64.DOI: 10.7522/j.issn.1000-694X.2021.00089

• • 上一篇    下一篇

莫高窟PM10浓度与气象要素的关系

杨小菊1,2,3(), 赵学勇2, 武发思1, 张正模1, 薛平1, 陈章1, 汪万福1, 张国彬1()   

  1. 1.敦煌研究院 国家古代壁画与土遗址保护工程技术研究中心/甘肃省敦煌文物保护研究中心,甘肃 敦煌 736200
    2.中国科学院西北生态环境资源研究院 奈曼沙漠化研究站/乌拉特荒漠草原研究站,甘肃 兰州 730000
    3.中国科学院大学,北京 100049
  • 收稿日期:2021-03-30 修回日期:2021-07-13 出版日期:2021-11-20 发布日期:2021-12-17
  • 通讯作者: 张国彬
  • 作者简介:张国彬(E-mail: 119234949@qq.com
    杨小菊(1987—),女,甘肃临洮人,博士研究生,主要从事文化遗产地生态环境与文物保护研究。E-mail: yangxiaoju@dha.ac.cn
  • 基金资助:
    国家自然科学基金项目(32060258);国家重点研发计划项目(2020YFC1522200);甘肃省科技厅青年科技基金计划项目(20JR5RA051);敦煌研究院院级课题(2020-KJ-YB-7)

Relationship of PM10 concentration in Mogao Grottoes to meteorological elements

Xiaoju Yang1,2,3(), Xueyong Zhao2, Fasi Wu1, Zhengmo Zhang1, Ping Xue1, Zhang Chen1, Wanfu Wang1, Guobin Zhang1()   

  1. 1.National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites / Gansu Provincial Research Center for Conservation of Dunhang Cultural Heritage,Dunhuang Academy,Dunhuang 736200,Gansu,China
    2.Naiman Desertification Research Station / Urat Desert-Grassland Research Station,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    3.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-03-30 Revised:2021-07-13 Online:2021-11-20 Published:2021-12-17
  • Contact: Guobin Zhang

摘要:

采用2018年敦煌莫高窟第16窟窟内与窟区PM10浓度及气象数据,分析PM10时空分布特征及其影响因素。结果表明:(1)两处监测点PM10浓度主要分布在50 μg·m-3以下,受重污染天气影响较小;春、冬、秋、夏季依次降低,窟区PM10浓度在春、冬季高于窟内,夏、秋季反之。(2)PM10浓度3月最高,9月最低,5—9月窟内月均值高于窟区。PM10污染日数窟内5月最多,而窟区3、5月较多。(3)PM10浓度日变化曲线在春季和秋季呈“双峰”型,夏季和冬季呈“单峰”型。(4)在半封闭环境的洞窟内,沙尘暴发生前后,PM10浓度达到极值及恢复至原来水平的时间均滞后于窟区。(5)在不同季节PM10浓度与气温、风速和降水呈负相关。除秋季外,PM10浓度与相对湿度、气压呈正相关。(6)窟区全年主风向为ESE,在冬春两季,此风向PM10浓度最高,PM10主要来自三危山前的戈壁滩、干涸的大泉河河道以及窟前裸露的地表积尘。

关键词: 莫高窟, PM10, 变化特征, 气象要素, 文化遗产保护

Abstract:

The PM10 concentration and meteorological data in the cave 16 and the cave area of Mogao Grottoes in Dunhuang in 2018 were used to analyze the temporal and spatial distribution characteristics of PM10 and its influencing factors. The results show that: (1) PM10 concentrations at the two monitoring points are mainly distributed below 50 μg·m-3, which are less affected by heavy pollution weather. Seasonal changes from high to low are spring, winter, autumn, and summer. The PM10 concentration in the cave area is higher than that in the cave in spring and winter, and vice versa in summer and autumn. (2) The concentration of PM10 was the highest in March and the lowest in September. The monthly average value in the cave from May to September was higher than that in the cave area. The number of PM10 pollution days is the most in May in the caves, while March and May are more in the cave areas. (3) The diurnal variation curve of PM10 concentration showed a "double peak" type in spring and autumn, and a "single peak" type in summer and winter. (4) In a cave with a semi-enclosed environment, before and after a sandstorm, the time for the PM10 concentration to reach the extreme value and to recover to the original level lags behind the cave area. (5) PM10 concentration is negatively correlated with temperature, wind speed and precipitation in different seasons. Except for autumn, PM10 concentration is positively correlated with relative humidity and air pressure. (6) The main wind direction in the cave area throughout the year is ESE. In winter and spring, PM10 concentration is highest in this wind direction. PM10 mainly comes from the Gobi Desert in front of Sanwei Mountain, the dry Daquan River channel and the exposed surface dust in front of the cave.

Key words: Mogao Grottoes, PM10, variation characteristics, meteorological elements, cultural heritage protection

中图分类号: