1 |
任珩,赵文智,杨荣,等.河西走廊绿洲农业水生产力提升的途径与对策[J].中国沙漠,2024,44(5):217-224.
|
2 |
邢铭强,马可,陈彩亮,等.河西地区农业绿色发展水平测度及耦合协调提升路径[J].中国沙漠,2024,44(6):207-219.
|
3 |
Fu T L, Li X R, Jia R L,et al.A novel integrated method based on a machine learning model for estimating evapotranspiration in dryland[J].Journal of Hydrology,2021,603:126881.
|
4 |
Fu T L, Li X R.Hybrid the long short-term memory with whale optimization algorithm and variational mode decomposition for monthly evapotranspiration estimation[J].Scientifc Reports,2022,12:20717.
|
5 |
Chen S, He C, Huang Z,et al.Using support vector machine to deal with the missing of solar radiation data in daily reference evapotranspiration estimation in China[J].Agricultural and Forest Meteorology,2022,316:108864.
|
6 |
Bilali E A, Hadri A, Taleb A,et al.A novel hybrid modeling approach based on empirical methods,PSO,XGBoost,and multiple GCMs for forecasting long-term reference evapotranspiration in a data scarce-area[J].Computers and Electronics in Agriculture,2025,232:110106-110116.
|
7 |
Dong J, Xing L W, Cui N B,et al.Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China[J].Agricultural Water Management,2024,108620.
|
8 |
Wu L F, Huang G M, Fan J L,et al.Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction[J].Computers and Electronics in Agriculture,2020,168:105-115.
|
9 |
Farshad A, Saeid M, Babak M,et al.Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation[J].Agricultural Water Management,2021,244:106622.
|
10 |
Roy D K, Sarkar T K, Kamar S S A,et al.Daily prediction and multi-step forward forecasting of reference evapotranspiration using LSTM and Bi-LSTM models[J].Agronomy,2022,12:594.
|
11 |
Fu T L, Li X R.Estimating the monthly pan evaporation with limited climatic data in dryland based on the extended long short-term memory model enhanced with meta-heuristic algorithms[J].Scientifc Reports,2023,13(1):5960-5969.
|
12 |
Farzad R, Ahmadi F, Sharafati A,et al.Investigating hybrid deep learning models and meta-heuristic algorithms in predicting evaporation from a reservoir:a case study of Dez Dam[J].Earth Science Informatics,2023,16:3597-3618.
|
13 |
Elzain E H, Abdalla A O, Abdallah M,et al.Innovative approach for predicting daily reference evapotranspiration using improved shallow and deep learning models in a coastal region:a comparative study[J].Journal of Environmental Management,2024,354:120246.
|
14 |
Ferreira L B, Cunha F.Multi-step ahead forecasting of daily reference evapotranspiration using deep learning[J].Computers and Electronics in Agriculture,2020,178:105728.
|
15 |
Dong J, Xing L, Cui N,et al.Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China[J].Agricultural Water Management,2024,292:108665.
|
16 |
Su H, Zhao D, Heidari A A,et al.RIME:a physics-based optimization[J].Neurocomputing,2023:183-214.
|
17 |
Heidari A A, Mirjalili S, Faris H,et al.Harris hawks optimization:algorithm and applications[J].Future Generation Computer Systems,2019,97:849-872.
|
18 |
Dehghani M, Trojovský P.Osprey optimization algorithm:a new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J].Frontiers in Mechanical Engineering,2023.
|
19 |
Dehghani M, Hubálovský Š, Trojovský P.Northern goshawk optimization:a new swarm-based algorithm for solving optimization problems[J].Ieee Access,2021,9:162059-162080.
|
20 |
Vaswani A, Shazeer N, Parmar N,et al.Attention is all you need[Z].10.48550/arXiv.1706.03762,2017.
|
21 |
Ji X B, Zhao W Z, Jin B W,et al.Seasonal variations in energy exchange and evapotranspiration of an oasis-desert ecotone in an arid region[J].Hydrological Processes,2021,35(9):1-16.
|
22 |
许澳康,吉天琪,石晶.甘肃黑河流域生态网络构建与优化[J].中国沙漠,2025,45(2):61-70.
|
23 |
雷军,程新平,薛春,等.黑河流域中游北部荒漠区植物群落特征与稳定性[J].中国沙漠,2024,44(6):187-194.
|
24 |
Wang S X, Shi J R, Yang W Y,et al.High and low frequency wind power prediction based on Transformer and BiGRU-Attention[J].Energy,2024,288:129753.
|
25 |
Wang W H, Xi C P.Short-term electricity load forecasting based on TPE-optimized CNN-BIGRU-attention[J].Journal of Physics:Conference Series,2023,2496:1.
|