img

官方微信

高级检索

中国沙漠 ›› 2025, Vol. 45 ›› Issue (3): 302-312.DOI: 10.7522/j.issn.1000-694X.2025.00167

• • 上一篇    下一篇

以霜冰优化算法优化CNN-BiLSTM-Attention的参考蒸散量估算

付桐林(), 金晶   

  1. 陇东学院 数学与信息工程学院,甘肃 庆阳 745000
  • 收稿日期:2025-03-27 修回日期:2025-06-06 出版日期:2025-05-20 发布日期:2025-06-30
  • 作者简介:付桐林(1977—),男,甘肃民乐人,博士,教授,主要研究方向为干旱区生态水文学、机器学习及其应用。E-mail: futonglin2008@163.com
  • 基金资助:
    甘肃省自然科学基金项目(23JRRM734);陇东学院博士基金项目(XYBYZK2305);庆阳市联合科研基金专项一般项目(QY-STK-2024A-068)

Estimating reference evapotranspiration using CNN-BiLSTM-Attention enhanced by RIME optimization algorithm

Tonglin Fu(), Jing Jin   

  1. College of Mathematics and Information Engineering,Longdong University,Qingyang 745000,Gansu,China
  • Received:2025-03-27 Revised:2025-06-06 Online:2025-05-20 Published:2025-06-30

摘要:

有限气象参数条件下借助于深度学习实现蒸散量的准确估算对干旱区有限水资源的高效利用和管理具有重要意义。当前基于混合深度学习模型CNN-BiLSTM-Attention的蒸散发估算忽视了参数优化,导致估算精度难以契合实际应用需求。本文提出了一种新的霜冰优化算法(RIME)优化CNN-BiLSTM-Attention的超参数的混合模型RIME-CNN-BiLSTM-Attention,实现了有限气象参数条件下临泽县参考蒸散量(ET0)的准确预测。与CNN-BiLSTM-Attention相比,混合模型RIME-CNN-BiLSTM-Attention的平均绝对百分比误差(MAPE)从14.56%下降到14.09%,可决系数从0.8654上升到0.8930。此外,数值结果表明混合模型RIME-CNN-BiLSTM-Attention的模型性能优于分别采用哈里斯鹰优化算法(HHO)、鱼鹰优化算法(OOA)、北方苍鹰算法(NGO)对CNN-BiLSTM-Attention进行优化的混合模型HHO-CNN-BiLSTM-Attention、OOA-CNN-BiLSTM-Attention、NGO-CNN-BiLSTM-Attention,意味着所构建混合模型RIME-CNN-BiLSTM-Attention具有更加稳健的模型性能和更高的计算精度,能够实现研究区域ET0的准确估算。

关键词: 参考蒸散量, 霜冰优化算法, 卷积神经网络, 双向长短期记忆网络, 注意力机制

Abstract:

Accurately estimating evapotranspiration using deep learning models under limited meteorological parameter conditions is of great significance for the efficient utilization and management of limited water resources in arid regions. However, current deep-learning-based hybrid model CNN-BiLSTM-Attention neglect the parameter optimization, making it difficult to meet the requirements of practical application. In this study, a novel hybrid model RIME-CNN-BiLSTM-Attention was proposed to achieve accurate prediction of daily reference evapotranspiration (ET0) in Linze County under limited meteorological parameter conditions by using the RIME Optimization Algorithm to optimize the hyper-parameter of CNN-BiLSTM-Attention. Compared with CNN-BiLSTM-Attention, the mean absolute percentage error (MAPE) of RIME-CNN-BiLSTM-Attention decreases from 14. 56% to 14. 09%, and the coefficient of determination increases from 0. 8654 to 0. 8930; Furthermore, the numerical results show that the hybrid model RIME-CNN-BiLSTM-Attention outperformed than that of HHO-CNN-BiLSTM-Attention, OOA-CNN-BiLSTM-Attention, and NGO-CNN-BiLSTM-Attention, where CNN-BiLSTM-Attention was separately optimized by the Harris Hawks Optimization (HHO), Osprey Optimization Algorithm (OOA), and Northern Goshawk Optimization (NGO), suggesting that the proposed hybrid model RIME-CNN-BiLSTM-Attention has more robust model performance and higher calculation accuracy, and can achieve accurate estimation of ET0 in the study area.

Key words: reference evapotranspiration, RIME optimization algorithm, convolutional neural network, bidirectional long short-term memory network, attention mechanism

中图分类号: