[1] 赵小仙,李毅,苏世平,等.6个种群蒙古沙拐枣同化枝解剖结构及与地理生态因子的关系[J].干旱区资源与环境,2015,29(2):55-60. [2] 赵小仙,李毅,苏世平,等.3个地理种群蒙古沙拐枣同化枝解剖结构及抗旱性比较[J].中国沙漠,2014,34(5):1293-1300. [3] 樊宝丽.风沙环境下沙拐枣(Calligonum mongolicum)自然更新策略研究[D].兰州:兰州大学,2017. [4] 刘娜,冯缨,管开云,等.蒙古沙拐枣(Calligonum mongolicum)的地理分布[J].干旱区研究,2015,32(4):753-759. [5] 刘娜,冯缨,管开云,等.蒙古沙拐枣(Calligonum mongolicum)的地理分布与气候关系[J].干旱区研究,2015,32(5):934-940. [6] Elith J,Leathwick J R.Speciesdistribution models:ecological explanation and prediction across space and time[J].Annual Review of Ecology Evolution & Systematics,2009,40(1):677-697. [7] Elith J,Phillips S J,Hastie T,et al.A statistical explanation of MaxEnt for ecologists[J].Diversity & Distributions,2015,17(1):43-57. [8] 朱耿平,乔慧捷.Maxent模型复杂度对物种潜在分布区预测的影响[J].生物多样性,2016,24(10):1189-1196. [9] Phillips S J,Anderson R P,Schapire R E.Maximum entropy modeling of species geographic distributions[J].Ecological Modelling,2006,190(3):231-259. [10] Mi C,Huettmann F,Guo Y,et al.Why choose Random Forest to predict rare species distribution with few samples in large undersampledareas?Three Asian crane species models provide supporting evidence[J].Peerj,2017,5(6). [11] 郭彦龙,卫海燕,路春燕,等.气候变化下桃儿七潜在地理分布的预测[J].植物生态学报,2014,38(3):249-261. [12] 赵泽芳,卫海燕,郭彦龙,等.黑果枸杞(Lycium ruthenicum)分布对气候变化的响应及其种植适宜性[J].中国沙漠,2017,37(5):902-909. [13] 马松梅,张明理,陈曦.沙冬青属植物在亚洲中部荒漠区的潜在地理分布及驱动因子分析[J].中国沙漠,2012,32(5):1301-1307. [14] Hidan M A E,Touloun O,Bouazza A,et al.Androctonusgenus species in arid regions:ecological niche models,geographicaldistributions,and envenomation risk[J].Veterinary World,2018,11(3):286-292. [15] 姚俊强,杨青,陈亚宁,等.西北干旱区气候变化及其对生态环境影响[J].生态学杂志,2013,32(5):1283-1291. [16] 赵哈林,赵学勇,张铜会,等.我国西北干旱区的荒漠化过程及其空间分异规律[J].中国沙漠,2011,31(1):1-8. [17] 姚俊强,杨青,刘志辉,等.中国西北干旱区降水时空分布特征[J].生态学报,2015,35(17):5846-5855. [18] 师玮,潘伯荣,段士民,等.蒙古沙拐枣(Calligonum mongolicum)与其相关种的果实形态差异性分析[J].中国沙漠,2011,31(1):121-128. [19] 许仲林,彭焕华,彭守璋.物种分布模型的发展及评价方法[J].生态学报,2015,35(2):557-567. [20] Hijmans R J,Cameron S E,Parra J L,et al.WORLDCLIM:very high resolution interpolated climate surfaces for global land areas[J].International Journal of Climatology,2005,25(15):1965-1978. [21] IPCC.Climate Change 2013:The Physical Science Basis[M].Cambridge,UK:Cambridge University Press,2013. [22] Moss R H,Edmonds J A,Hibbard K A,et al.The next generation of scenarios for climate change research and assessment[J].Nature,2010,463(7282):747-756. [23] Guo Y,Li X,Zhao Z,et al.Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholomamatsutake under multiple climate change scenarios[J].Scientific Reports,2017,7:46221. [24] Yang X Q,Kushwaha S P S,Saran S,et al.MaxEnt modeling for predicting the potential distribution of medicinal plant,Justiciaadhatoda,L.in Lesser Himalayan foothills[J].Ecological Engineering,2013,51(1):83-87. [25] 乔慧捷,胡军华,黄继红.生态位模型的理论基础、发展方向与挑战[J].中国科学:生命科学,2013,43(11):915-927. [26] Phillipsa S J,Anderson R P,Schapire R E.Maximumentropy modeling of species geographic distributions[J].Ecological Modeling,2013,190(3/4):231-259. [27] Phillips S J,Dudík M.Modeling of species distributions with MaxEnt:new extensions and a comprehensive evaluation[J].Ecography,2008,31(2):161-175. [28] 王运生,谢丙炎,万方浩,等.ROC曲线分析在评价入侵物种分布模型中的应用[J].生物多样性,2007,15(4):365-372. [29] Pliscoff P,Luebert F,Hilger H H,et al.Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk:a test with plants in an arid environment[J].Ecological Modelling,2014,288:166-177. |