中国沙漠 ›› 2025, Vol. 45 ›› Issue (3): 93-101.DOI: 10.7522/j.issn.1000-694X.2025.00077
张静雯1(), 殷金悦1, 霍佳琪1, 程凤1, 高娜1, 杨蕊1, 鲍婧婷2, 王进1,3(
)
收稿日期:
2025-02-11
修回日期:
2025-04-14
出版日期:
2025-05-20
发布日期:
2025-06-30
通讯作者:
王进
作者简介:
张静雯(2001—),甘肃武威人,硕士研究生,主要从事恢复生态学研究。E-mail: m19993516719@163.com
基金资助:
Jingweng Zhang1(), Jinyue Yin1, Jiaqi Huo1, Feng Cheng1, Na Gao1, Rui Yang1, Jingting Bao2, Jin Wang1,3(
)
Received:
2025-02-11
Revised:
2025-04-14
Online:
2025-05-20
Published:
2025-06-30
Contact:
Jin Wang
摘要:
菌藻共生作为近年来治理环境污染与修复退化生态环境的重要新兴工艺而受到广泛关注。菌藻双方在物理结构联系、营养物质循环以及信号传导等生理生化机制方面联系紧密,目前这种技术可用于水体污染治理、养殖尾水处理、土壤修复等多个领域,在生态环境绿色修复方面发挥着关键作用。但当前研究仍存在挑战,共生机制尚未厘清,共生体系在复杂环境下的长期稳定性与可调控性有待深入探索。本文基于当前学者对菌藻共生体系的研究现状,分析了菌藻共生机制以及生态修复实践的研究进展,展望未来菌藻共生的发展方向,为治理土壤荒漠化相关领域的进一步研究提供理论与实践参考。
中图分类号:
张静雯, 殷金悦, 霍佳琪, 程凤, 高娜, 杨蕊, 鲍婧婷, 王进. 生态修复领域菌藻共生体系研究进展[J]. 中国沙漠, 2025, 45(3): 93-101.
Jingweng Zhang, Jinyue Yin, Jiaqi Huo, Feng Cheng, Na Gao, Rui Yang, Jingting Bao, Jin Wang. Algal-bacteria interactions and their potential functions in ecological restoration areas[J]. Journal of Desert Research, 2025, 45(3): 93-101.
1 | 潘昌祥,欧阳茜如,廖梦榆,等.西北干旱区沙漠化土地生态修复技术及沙产业的适用范围[J].中国沙漠,2023,43(5):155-165. |
2 | 徐佳杰,张妮,谢周云,等.基于文献计量的菌藻共生技术研究现状及发展趋势[J].环境科学学报,2023,43(7):401-412. |
3 | Rolshausen G, Hallman U, Grande F D,et al.Expanding the mutualistic niche:parallel symbiont turnover along climatic gradients[J].Proceedings.Biological Sciences,2020,287(1924):20192311. |
4 | Ramanan R, Kim B H, Cho D H,et al.Algae-bacteria interactions:Evolution,ecology and emerging applications[J].Biotechnology Advances,2016,34(1):14-29. |
5 | 金忠友,陈志宏,郑政,等.水环境菌藻共生相互作用研究进展[J].环境污染与防治,2023,45(6):870-874. |
6 | 刘园园.着生藻类和浮游藻类在三峡库区河流健康评价中的适宜性比较研究[D].重庆:西南大学,2018. |
7 | 郑强,贺博闻,史文卿,等.海洋超微型蓝细菌聚球藻的生态学研究进展[J].厦门大学学报(自然科学版),2023,62(3):301-313. |
8 | Zhang M, Lu T, Paerl H W,et al.Feedback regulation between aquatic microorganisms and the bloom-forming cyanobacterium Microcystis aeruginosa [J].Applied and Environmental Microbiology,2019,85(21):e01362-19. |
9 | Liu X Y, Hong Y, Zhai Q Y,et al.Performance and mechanism of Chlorella in swine wastewater treatment:roles of nitrogen-phosphorus ratio adjustment and indigenous bacteria[J].Bioresource Technology,2022,358:127402. |
10 | Schvarcz C R, Wilson S T, Caffin M,et al.Overlooked and widespread pennate diatom-diazotroph symbioses in the sea[J].Nature Communications,2022,13(1):799. |
11 | 张增虎,唐丽丽,张永雨.海洋中藻菌相互关系及其生态功能[J].微生物学通报,2018,45(9):2043-2053. |
12 | Pichler G, Muggia L, Carniel F C,et al.How to build a lichen:from metabolite release to symbiotic interplay[J].New Phytologist,2023,238(4):1362-1378. |
13 | 李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展,2009,24(1):11-24. |
14 | Wang Y, Li R, Wang D,et al.Regulation of symbiotic interactions and primitive lichen differentiation by UMP1 MAP kinase in Umbilicaria muhlenbergii [J].Nature Communications,2023,14(1):6972. |
15 | 鲍婧婷,孙靖尧,王进.生物土壤结皮中微生物群落特征综述[J].中国沙漠,2022,42(6):33-43. |
16 | Du Z Y, Alvaro J, Hyden B,et al.Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata [J].Biotechnology for Biofuels and Bioproducts,2018,11:174. |
17 | Du Z Y, Zienkiewicz K, Vande Pol N,et al.Algal-fungal symbiosis leads to photosynthetic mycelium[J].eLife,2019,8:e47815. |
18 | Villacorte L O, Ekowati Y, Calix-Ponce H N,et al.Improved method for measuring transparent exopolymer particles (TEP) and their precursors in fresh and saline water[J].Water Research,2015,70:300-12. |
19 | Lipsman V, Shlakhter O, Rocha J,et al.Bacteria contribute exopolysaccharides to an algal-bacterial joint extracellular matrix[J].NPJ Biofilms and Microbiomes,2024,10(1):36-43. |
20 | Bonfante P.Algae and fungi move from the past to the future[J].eLife,2019,8:e49448. |
21 | Muñoz-Marín M D C, Magasin J D, Zehr J P.Open ocean and coastal strains of the N2-fixing cyanobacterium UCYN-A have distinct transcriptomes[J].PLOS One,2023,18(5):e0272674. |
22 | Lutzoni F, Nowak M D, Alfaro M E,et al.Contemporaneous radiations of fungi and plants linked to symbiosis[J].Nature Communications,2018,9(1):5451. |
23 | 任艳龙.复合式氧化沟-菌藻共生系统脱氮性能的试验研究[D].重庆:重庆大学,2015. |
24 | Cai T, Park S Y, Li Y.Nutrient recovery from wastewater streams by microalgae:status and prospects[J].Renewable and Sustainable Energy Reviews,2013,19:360-369. |
25 | 孙宏,李园成,王新,等.菌藻共生系统在生猪养殖污水处理中的应用及其互作机的研究进展[J].中国畜牧杂志,2021,57(2):11-16. |
26 | Karya N, Van der Steen N P, Lens P N L.Photo-oxygenation to support nitrification in an algal-bacterial consortium treating artificial wastewater[J].Bioresource Technology,2013,134:244-250. |
27 | Xiong Z H, Ma H J, Huang G L,et al.Treating sewage using coimmobilized system of Chlorella pyrenoidosa and activated sludge[J].Environmental Technology,2007,28(1):33-39. |
28 | 刘静,赵海涛,盛海君,等.铁对太湖常见藻类生长及Ca2+、Mg2+离子吸收的影响[J].环境科学与技术,2011,34(1):59-64. |
29 | Fallahi A, Rezvani F, Asgharnejad H,et al.Interactions of microalgae-bacteria consortia for nutrient removal from wastewater:a review[J].Chemosphere,2021,272:129878. |
30 | Lee J, Zhang L.The hierarchy quorum sensing network in Pseudomonas aeruginosa [J].Protein Cell,2015,6:26-41. |
31 | 宋水山,赵芊.细菌群体感应及其信号分子介导的植物-细菌跨界信息交流[J].微生物学杂志,2018,38(1):1-11. |
32 | 方艺苓.基于微生物群体感应的菌藻共生MBR污染物强化去除机制及膜污染控制研究[D].济南:济南大学,2023. |
33 | Amin S A, Hmelo L R, van Tol H M,et al.Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria[J].Nature,2015,522(7554):98-101. |
34 | Dow L.How do quorum-sensing signals mediate algae-bacteria interactions[J].Microorganisms,2021,9(7):1391. |
35 | Kaufmann G F, Sartorio R, Lee S H,et al.Revisiting quorum sensing:discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(2):309-314. |
36 | Liu Z, Wang J, Zhang S,et al.Formation characteristics of algal-bacteria granular sludge under low-light environment:from sludge characteristics,extracellular polymeric substances to microbial community[J].Bioresource Technology,2023,376:128851. |
37 | Wang S, Zhang Y, Ge H,et al.Cultivation of algal-bacterial granular sludge and degradation characteristics of tetracycline[J].Water Environment Research,2023,95(3):e10846. |
38 | Elahinik A, Haarsma M, Abbas B,et al.Glycerol conversion by aerobic granular sludge[J].Water Research,2022,227:119340. |
39 | 位文倩,孙昕.菌藻共培养对栅藻去除生活污水中氮磷和脂质积累的影响[J].环境化学,2023,42(2):646-657. |
40 | 易鑫.利用菌藻颗粒污泥处理低浓度市政废水的研究[D].大连:大连海洋大学,2024. |
41 | 廖怀玉,孙丽,李济斌,等.菌-藻共生生物膜污水处理研究进展[J].土木与环境工程学报(中英文),2021,43(4):141-153. |
42 | Ren Z, Fu R, Sun L,et al.Unraveling biological behavior and influence of magnetic iron-based nanoparticles in algal-bacterial systems:a comprehensive review[J].Science of the Total Environment,2024,915:169852. |
43 | Leong Y K, Chang J S.Bioremediation of heavy metals using microalgae:recent advances and mechanisms[J].Bioresource Technology,2020,303:122886. |
44 | 马垚.土壤中铁氧化物对重金属的微生物吸附原理及现状分析[J].现代园艺,2020,43(5):33-35. |
45 | Qin G, Niu Z, Yu J,et al.Soil heavy metal pollution and food safety in China:Effects,sources and removing technology[J].Chemosphere,2021,267:129205. |
46 | 唐璐,何彩群,张志鹏.土壤污染现状调查与土壤保护策略分析[J].皮革制作与环保科技,2024,5(11):143-145. |
47 | Sarkar P, Roy A, Pal S,et al.Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation[J].Bioresource Technology,2017,242:15-27. |
48 | 滕菲.正构烷烃降解菌的筛选及降解过程中的变化特征[D].沈阳:沈阳大学,2016. |
49 | 程晓暄.土壤中多环芳烃生物降解的差异性及其对源解析参数的影响[D].北京:中国石油大学(北京),2018. |
50 | 沈青.地表水中藻类代谢对pH和含氧量影响分析[J].环境科学与技术,2011,34():261-262. |
51 | Zhao Y, Wang J.Mechanical sand fixing is more beneficial than chemical sand fixing for artificial cyanobacteria crust colonization and development in a sand desert[J].Applied Soil Ecology,2019,140:115-120. |
52 | Couradeau E, Giraldo-Silva A, De Martini F,et al.Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium,Microcoleus vaginatus,and the formation of a nitrogen-fixing cyanosphere[J].Microbiome,2019,7(1):55. |
53 | Garcia-Pichel F, Wojciechowski M F.The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates[J].PLOS One,2009,4(11):e7801. |
54 | Cania B, Vestergaard G, Kublik S,et al.Biological soil crusts from different soil substrates harbor distinct bacterial groups with the potential to produce Exopolysaccharides and Lipopolysaccharides [J].Microbial Ecology,2020,79(2):326-341. |
55 | Yan S, Yang J, Zhou S,et al.Biological soil crusts alleviate the stress of arsenic on rice germination and the underlying immobilization mechanisms[J].Ecotoxicology and Environmental Safety,2021,227:112839. |
56 | 焦冰洁,徐琳,李香真,等.黄土高原水蚀风蚀交错区固氮微生物群落多样性在生物结皮中的演变规律[J].生态学报,2023,43(23):9662-9673. |
57 | Wang Z, Liu K, Du Y,et al.Biological soil crusts significantly improve soil fertility and change soil microbiomes in Qinghai-Tibetan alpine grasslands[J].FEMS Microbiology Letters,2024,371:fnae088. |
58 | Cai H Y, Yan Z S, Wang A J,et al.Analysis of the attached microbial community on mucilaginous cyanobacterial aggregates in the eutrophic Lake Taihu reveals the importance of Planctomycetes [J].Microbial Ecology,2013,66(1):73-83. |
59 | Duan Y, Li Y, Zhao J,et al.Changes in microbial composition during the succession of biological soil crusts in alpine hulun buir sandy land,China[J].Microbial Ecology,2024,87(1):43-53. |
60 | Bethany J, Giraldo-Silva A, Nelson C,et al.Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils[J].Applied and Environmental Microbiology,2019,85(15):e00735. |
61 | Song H, Peng L, Li Z,et al.Metal distribution and biological diversity of crusts in paddy fields polluted with different levels of cadmium[J].Ecotoxicology and Environmental Safety,2019,184:109620. |
62 | Xiao Z, Peng M, Mei Y,et al.Effect of organosilicone and mineral silicon fertilizers on chemical forms of cadmium and lead in soil and their accumulation in rice[J].Environmental Pollution,2021,283:117107. |
63 | Mahanty T, Bhattacharjee S, Goswami M,et al.Biofertilizers:a potential approach for sustainable agriculture development[J].Environmental Science and Pollution Research,2017,24(4):3315-3335. |
64 | Beneduzi A, Ambrosini A, Passaglia L M.Plant growth-promoting rhizobacteria (PGPR):Their potential as antagonists and biocontrol agents[J].Genetics and Molecular Biology,2012,35(4):1044-1051. |
65 | Stirk W A, Bálint P, Tarkowská D,et al.Hormone profiles in microalgae:gibberellins and brassinosteroids[J].Plant Physiology and Biochemistry,2013,70:348-353. |
66 | Farid R, Mutale-Joan C, Redouane B,et al.Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum [J].Applied Biochemistry and Biotechnology,2019,188(1):225-240. |
67 | Geries L S M, Elsadany A Y.Maximizing growth and productivity of onion (Allium cepa L.) by Spirulina platensis extract and nitrogen-fixing endophyte Pseudomonas stutzeri [J].Archives of Microbiology,2021,203(1):169-181. |
68 | Kang Y, Kim M, Shim C,et al.Potential of algae-bacteria synergistic effects on vegetable production[J].Frontiers in Plant Science,2021,12:656662. |
69 | Bhatt P, Brown P B, Huang J Y,et al.Algae and indigenous bacteria consortium in treatment of shrimp wastewater:a study for resource recovery in sustainable aquaculture system[J].Environmental Research,2024,250:118447. |
70 | Huang H, Liu X, Lang Y,et al.Breaking barriers:bacterial-microalgae symbiotic systems as a probiotic delivery system[J].Journal of Nanobiotechnology,2024,22(1):371-379. |
71 | Wang Y, Zhou P, Zhou W,et al.Network analysis indicates microbial assemblage differences in life stages of Cladophora [J].Applied and Environmental Microbiology,2023,89(3):e0211222. |
72 | 赵晨冉,李秀辰,张国琛,等.生态净化海水养殖尾水国内外研究进展[J].中南农业科技,2022,43(6):180-184. |
73 | Gilmour D J.Microalgae for biofuel production[J].Advances in Applied Microbiology,2019,109:1-30. |
74 | Yao S, Lyu S, An Y,et al.Microalgae-bacteria symbiosis in microalgal growth and biofuel production:a review[J].Journal of Applied Microbiology,2019,126(2):359-368. |
75 | Fu B, Liu Y, Meadows M E.Ecological restoration for sustainable development in China[J].National Science Review,2023,10(7):nwad033. |
76 | Prézelin B B, Alberte R S.Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates[J].Proceedings of the National Academy of Sciences of the United States of America,1978,75(4):1801-1804. |
77 | Liu G, Sun J, Xie P,et al.Mechanism of bacterial communities regulating litter decomposition under climate warming in temperate wetlands[J].Environmental Science and Pollution Research,2023,30(21):60663-60677. |
78 | Nowruzi B, Shishir M A, Porzani S J,et al.Exploring the interactions between algae and bacteria[J].Mini-Reviews in Medicinal Chemistry,2022,22(20):2596-2607. |
79 | Cao W, Xiong Y, Zhao D,et al.Bryophytes and the symbiotic microorganisms,the pioneers of vegetation restoration in karst rocky desertification areas in southwestern China[J].Applied Microbiology and Biotechnology,2020,104(2):873-891. |
80 | Wang C, Yu W, Ma L,et al.Biotic and abiotic drivers of ecosystem multifunctionality:evidence from the semi-arid grasslands of northern China[J].Science of the Total Environment,2023,887:164158. |
81 | Schramma N, Canales G C, Jalaal M.Light-regulated chloroplast morphodynamics in a single-celled dinoflagellate[J].Proceedings of the National Academy of Sciences of the United States of America,2024,121(47):e2411725121. |
82 | Ten Veldhuis M C, Ananyev G, Dismukes G C.Symbiosis extended:exchange of photosynthetic O2 and fungal-respired CO2 mutually power metabolism of lichen symbionts[J].Photosynthesis Research,2020,143(3):287-299. |
83 | 郝凯旋,陈文兵,母锐敏,等.菌藻系统对废水中氮磷去除规律的研究[J].山东建筑大学学报,2019,34(5):50-54. |
84 | Gatheru Waigi M, Sun K, Gao Y.Sphingomonads in microbe-assisted phytoremediation:tackling soil pollution[J].Trends in Biotechnology,2017,35(9):883-899. |
85 | Krug L, Morauf C, Donat C,et al.Plant growth-promoting methylobacteria selectively increase the biomass of biotechnologically relevant microalgae[J].Frontiers in Microbiology,2020,11:427-436. |
86 | Liu X, Zuo Z, Xie X,et al.SLC24A-mediated calcium exchange as an indispensable component of the diatom cell density-driven signaling pathway[J].The International Society for Microbial Ecology,2024,18(1):wrae039. |
87 | Zhang H, Yan Q, An Z,et al.A revolving algae biofilm based photosynthetic microbial fuel cell for simultaneous energy recovery,pollutants removal,and algae production[J].Frontiers in Microbiology,2022,13:990807. |
88 | Sahu S, Kaur A, Singh G,et al.Integrating biosorption and machine learning for efficient remazol red removal by algae-bacteria co-culture and comparative analysis of predicted models[J].Chemosphere,2024,355:141791. |
89 | 贾毅立,李洋,范琳.我国北方沙化土地综合治理对策[J].林业科技通讯,2024(9):46-49. |
90 | Mackelprang R, Vaishampayan P, Fisher K.Adaptation to environmental extremes structures functional traits in biological soil crust and hypolithic microbial communities[J].mSystems,2022,7(4):e0141921. |
[1] | 崔桂鹏, 高攀, 孔维远, 崔梦淳, 卢琦. “三北”工程科学治沙: 理念、技术与成效[J]. 中国沙漠, 2025, 45(3): 11-20. |
[2] | 马亚丽, 马莉, 杨丽萍, 王思晴, 赵长明, 陈宁. 生态水文视角下的旱区生物土壤结皮-维管植物共存模式[J]. 中国沙漠, 2025, 45(3): 121-130. |
[3] | 李佳, 贾晓红, 周德正, 吴波. 极端环境生物土壤结皮发育对碳循环的影响[J]. 中国沙漠, 2025, 45(3): 131-140. |
[4] | 赵丽娜, 谢燚谛, 贺子康, 柴梦洋, 高源婧坤, 吴影, 张杰, 古绍彬. 荒漠生物土壤结皮碳降解菌株的筛选鉴定及特性分析[J]. 中国沙漠, 2025, 45(3): 185-190. |
[5] | 赵逸雪, 赵洋, 连煜超, 赵燕翘, 许文文. 固沙灌木种类和密度对凋落物及生物土壤结皮的影响[J]. 中国沙漠, 2025, 45(3): 262-270. |
[6] | 赵洋, 连煜超, 赵燕翘, 许文文, 赵逸雪. 生物土壤结皮在防沙治沙中的应用综述[J]. 中国沙漠, 2025, 45(3): 31-38. |
[7] | 王洋, 王振亭. 植物固沙最低盖度的理论计算[J]. 中国沙漠, 2025, 45(2): 97-101. |
[8] | 杨奕颖, 苏思霖, 曹恩志, 李红有, 迟洪明, 蔺凯, 吴旭东, 何文强, 杨昊天. 沙漠大型光伏电站对固沙植物表型及生物量分配的影响[J]. 中国沙漠, 2025, 45(1): 162-172. |
[9] | 李玉强, 王旭洋, 郑成卓, 连杰, 刘新平, 龚相文, 段育龙, 牟晓明, 王立龙. 科尔沁沙地防沙治沙实践与生态可持续修复浅议[J]. 中国沙漠, 2024, 44(4): 302-314. |
[10] | 潘昌祥, 欧阳茜如, 廖梦榆, 范裕, 郭群, 张志山, 吴戈男, 赵洋, 刘立超, 潘颜霞, 李新荣, 屈建军, 穆松林, 李胜功. 西北干旱区沙漠化土地生态修复技术及沙产业的适用范围[J]. 中国沙漠, 2023, 43(5): 155-165. |
[11] | 赵燕翘, 连煜超, 许文文, 赵逸雪, 韩高玲, 赵洋. 中国人工蓝藻结皮研究进展[J]. 中国沙漠, 2023, 43(5): 214-222. |
[12] | 张胜男, 高海燕, 闫德仁, 黄海广. 沙漠生物土壤结皮演替对微生物群落结构和土壤酶活力的影响[J]. 中国沙漠, 2023, 43(3): 178-187. |
[13] | 王楠, 赵燕翘, 许文文, 孙靖尧, 李承义, 赵洋. 两种荒漠蓝藻生长特征及其对培养水体微环境的影响[J]. 中国沙漠, 2023, 43(1): 66-74. |
[14] | 鲍婧婷, 孙靖尧, 王进. 生物土壤结皮中微生物群落特征综述[J]. 中国沙漠, 2022, 42(6): 33-43. |
[15] | 赵康, 张磊, 李凯凯, 王斐, 张丙昌. 干旱区土壤自养微生物研究进展[J]. 中国沙漠, 2022, 42(5): 177-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn