中国沙漠 ›› 2022, Vol. 42 ›› Issue (5): 177-186.DOI: 10.7522/j.issn.1000-694X.2022.00033
收稿日期:
2021-12-07
修回日期:
2022-03-02
出版日期:
2022-09-20
发布日期:
2022-09-22
通讯作者:
张丙昌
作者简介:
张丙昌(E-mail: zhangbc@sxnu.edu.cn)基金资助:
Kang Zhao1(), Lei Zhang1, Kaikai Li2, Fei Wang3, Bingchang Zhang2(
)
Received:
2021-12-07
Revised:
2022-03-02
Online:
2022-09-20
Published:
2022-09-22
Contact:
Bingchang Zhang
摘要:
微生物自养固碳是维持干旱区土壤微生物群落结构及异养活动的重要过程,并影响地表生物结皮的演替及生态功能。近年来,土壤微生物组学的广泛应用,拓展了蓝细菌及真核藻类土壤自养微生物功能群研究,揭示了非蓝细菌类原核微生物向土壤输入有机质的可能。基于此,本文综述了干旱区土壤蓝细菌及藻类的分布及功能特征,并总结了环境因子的调控作用,重点总结了近几年对非蓝细菌自养微生物功能群及其生态功能的探索,最后对干旱区土壤自养微生物功能群研究的发展进行了总结与展望,以期为深入理解干旱区土壤微生物群落的形成及发展机理提供理论基础,并为良好生物结皮的构建提供科学依据。
中图分类号:
赵康, 张磊, 李凯凯, 王斐, 张丙昌. 干旱区土壤自养微生物研究进展[J]. 中国沙漠, 2022, 42(5): 177-186.
Kang Zhao, Lei Zhang, Kaikai Li, Fei Wang, Bingchang Zhang. A review on autotrophic microorganisms research in dryland soils[J]. Journal of Desert Research, 2022, 42(5): 177-186.
生物固碳循环 | 还原性乙酰辅酶A途径 | 3-羟基丙酸 双循环 | 3-羟基丙酸循环/ 4-羟基丁酸循环 | 还原性三羧酸循环 | ||||
---|---|---|---|---|---|---|---|---|
属 | Blautia Marvinbryantia Syntrophococcus Acetitomaculum Clostridium Methanoregula | Aminobacter Bradyrhizobium Burkholderia Mesorhizobium Mycobacterium Stappia Stenotrophomonas Xanthobacter | Cenarchaeum Nitrosopumilus | Nitrosopumilus Thermoanaerobacter Rhodospirillum Erythrobacter Rhodobacter Bacteroides | Persephonella | Helicobacter Hydrogenobacter Thermotoga Thermoanaerobacter Geobacter Desulfovibrio Campylobacter | Chlorobaculum Helicobacter Clostridium Thermotoga Archaeoglobus Pyrococcus Methanococcus | |
功能基因 | acsB | coxL | pcc/acc | hcd | accA | aclB | oorA | porA |
门 | Firmicutes Euryarchaeota | Proteobacteria Actinobacteria | Proteobacteria Actinobacteria Chloroflexi Deinococcus-Thermus Firmicutes Euryarchaeota Bacteroidetes | Thaumarchaeota | Thaumarchaeota Firmicutes Proteobacteria Bacteroidetes | Aquificae | Aquificae Thermotogae Proteobacteria Firmicutes | Chlorobi Proteobacteria Firmicutes Thermotogae Euryarchaeota |
表1 生物固碳循环指示基因及其对应的自养微生物类群
Table 1 Functional genes of different autotrophic CO2 fixation pathways and corresponding microbial groups
生物固碳循环 | 还原性乙酰辅酶A途径 | 3-羟基丙酸 双循环 | 3-羟基丙酸循环/ 4-羟基丁酸循环 | 还原性三羧酸循环 | ||||
---|---|---|---|---|---|---|---|---|
属 | Blautia Marvinbryantia Syntrophococcus Acetitomaculum Clostridium Methanoregula | Aminobacter Bradyrhizobium Burkholderia Mesorhizobium Mycobacterium Stappia Stenotrophomonas Xanthobacter | Cenarchaeum Nitrosopumilus | Nitrosopumilus Thermoanaerobacter Rhodospirillum Erythrobacter Rhodobacter Bacteroides | Persephonella | Helicobacter Hydrogenobacter Thermotoga Thermoanaerobacter Geobacter Desulfovibrio Campylobacter | Chlorobaculum Helicobacter Clostridium Thermotoga Archaeoglobus Pyrococcus Methanococcus | |
功能基因 | acsB | coxL | pcc/acc | hcd | accA | aclB | oorA | porA |
门 | Firmicutes Euryarchaeota | Proteobacteria Actinobacteria | Proteobacteria Actinobacteria Chloroflexi Deinococcus-Thermus Firmicutes Euryarchaeota Bacteroidetes | Thaumarchaeota | Thaumarchaeota Firmicutes Proteobacteria Bacteroidetes | Aquificae | Aquificae Thermotogae Proteobacteria Firmicutes | Chlorobi Proteobacteria Firmicutes Thermotogae Euryarchaeota |
1 | Guan P T, Zhang X K, Yu J,et al.Soil microbial food web channels associated with biological soil crusts in desertification restoration:the carbon flow from microbes to nematodes[J].Soil Biology & Biochemistry,2018,116:82-90. |
2 | Zhou H, Gao Y, Jia X H,et al.Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land,northwestern China[J].Soil Biology & Biochemistry,2020,144:107782. |
3 | Maier S, Tamm A, Wu D,et al.Photoautotrophic organisms control microbial abundance,diversity,and physiology in different types of biological soil crusts[J].ISME Journal,2018,12(4):1032-1046. |
4 | Couradeau E, Karaoz U, Lim H C,et al.Bacteria increase arid-land soil surface temperature through the production of sunscreens[J].Nature Communications,2016,7:10373. |
5 | Leung P M, Bay S K, Meier D V, al et,Energetic basis of microbial growth and persistence in desert ecosystems[J].mSystems,2020,5(2):e00495-19. |
6 | Ji M, Greening C, Vanwonterghem I,et al.Atmospheric trace gases support primary production in Antarctic desert surface soil[J].Nature,2017,552:400-403. |
7 | Hugler M, Sievert S M.Beyond the calvin cycle:Autotrophic carbon fixation in the ocean[J].Annual Review of Marine Science,2011,3:261-289. |
8 | Berg I A.Ecological aspects of the distribution of different autotrophic CO2 fixation pathways[J].Applied and Environmental Microbiology,2011,77(6):1925-1936. |
9 | Pointing S B, Belnap J.Microbial colonization and controls in dryland systems[J].Nature Reviews Microbiology,2012,10(8):551-562. |
10 | 李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展,2009,24(1):11-24. |
11 | 周晓兵,张丙昌,张元明.生物土壤结皮固沙理论与实践[J].中国沙漠,2021,41(1):164-173. |
12 | 李茜倩,张元明.荒漠藓类结皮边缘效应下土壤肥力的灰色关联度分析[J].中国沙漠,2019,39(3):17-24. |
13 | Dojani S, Budel B, Deutschewitz B,et al.Rapid succession of biological soil crusts after experimental disturbance in the Succulent Karoo,South Africa[J].Applied Soil Ecology,2011,48(3):263-269. |
14 | Budel B, Darienko T, Deutschewitz K,et al.Southern African biological soil crusts are ubiquitous and highly diverse in drylands,being restricted by rainfall frequency[J].Microbial Ecology,2009,57(2):229-247. |
15 | 张元明,王雪芹.荒漠地表生物土壤结皮形成与演替特征概述[J].生态学报,2010,30(16):4484-4492. |
16 | Eldridge D J, Reed S, Travers S K,et al.The pervasive and multifaceted influence of biocrusts on water in the world's drylands[J].Global Change Biology,2020,26:6003-6014. |
17 | 肖波,赵允格,邵明安.陕北水蚀风蚀交错区两种生物结皮对土壤饱和导水率的影响[J].农业工程学报,2007,23(12):35-40. |
18 | 李亚红,卜崇峰,郭琦,等.毛乌素沙地藓、藻结皮生态功能对比[J].中国沙漠,2021,41(2):138-144. |
19 | Angeles Munoz-Martin M, Becerra-Absalon I, Perona E,et al.Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient[J].New Phytologist,2019,221(1):123-141. |
20 | Garcia-Pichel F, Lopez-Cortes A, Nubel U.Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau[J].Applied and Environmental Microbiology,2001,67(4):1902-1910. |
21 | Munoz-Rojas M, Roman J R, Roncero-Ramos B,et al.Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration[J].The Science of the Total Environment,2018,636:1149-1154. |
22 | Wang W B, Liu Y D, Li D H,et al.Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area[J].Soil Biology & Biochemistry,2009,41(5):926-929. |
23 | Zhao Y, Jia R L, Wang J.Towards stopping land degradation in drylands:water-saving techniques for cultivating biocrusts in situ[J].Land Degradation & Development,2019,30(18):2336-2346. |
24 | 饶本强,王伟波,兰书斌,等.库布齐沙地三年生人工藻结皮发育特征及微生物分布[J].水生生物学报,2009,33(5):937-944. |
25 | Housman D C, Powers H H, Collins A D,et al.Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J].Journal of Arid Environments,2006,66(4):620-634. |
26 | Zaady E, Kuhn U, Wilske B,et al.Patterns of CO2 exchange in biological soil crusts of successional age[J].Soil Biology & Biochemistry,2000,32(7):959-966. |
27 | Buedel B, Williams W J, Reichenberger H.Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah,Queensland,Australia[J].Biogeosciences,2018,15(2):491-505. |
28 | Weber B, Büdel B, Belnap J.Biological soil crusts:an organizing principle in drylands[M].Switzerland:Springer International Publishing,2016:56-73. |
29 | Garcia-Pichel F, Wojciechowski M F.The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates[J].Plos One,2009,4(11):e7801. |
30 | Tang K, Jia L J, Yuan B,et al.Aerobic anoxygenic phototrophic bacteria promote the development of biological soil crusts[J].Frontiers in Microbiology,2018,9:2715. |
31 | Xu L, Zhu B J, Li C N,et al.Development of biological soil crust prompts convergent succession of prokaryotic communities[J].Catena,2020,187:104360. |
32 | Gao Q J, Garcia-Pichel F.Microbial ultraviolet sunscreens[J].Nature Reviews Microbiology,2011,9(11):791-802. |
33 | Hoffmann L.Algae of terrestrial habitats[J].Botanical Review,1989,55(2):77-105. |
34 | Pushkareva E, Johansen J R, Elster J.A review of the ecology,ecophysiology and biodiversity of microalgae in Arctic soil crusts[J].Polar Biology,2016,39(12):2227-2240. |
35 | Zhang B C, Zhang Y M, Zhao J C,et al.Microalgal species variation at different successional stages in biological soil crusts of the Gurbantunggut Desert,Northwestern China[J].Biology and Fertility of Soils,2009,45(5):539-547. |
36 | Zhang B C, Li R H, Xiao P,et al.Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut Desert,Northwestern China[J].Journal of Basic Microbiology,2016,56(3):308-320. |
37 | Giraldo-Silva A, Fernandes V M C, Bethany J,et al.Niche partitioning with temperature among heterocystous cyanobacteria (Scytonema spp.,Nostoc spp.,and Tolypothrix spp.) from biological soil crusts[J].Microorganisms,2020,8(3):396. |
38 | Zhao K, Kong W D, Wang F,et al.Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils[J].Soil Biology & Biochemistry,2018,127:230-238. |
39 | Yeager C M, Kornosky J L, Morgan R E,et al.Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N-2-fixing members of biological soil crusts of the Colorado Plateau,USA[J].Fems Microbiology Ecology,2007,60(1):85-97. |
40 | Garcia-Pichel F, Loza V, Marusenko Y,et al.Temperature drives the continental-scale distribution of key microbes in topsoil communities[J].Science,2013,340(6140):1574-1577. |
41 | Fernandes V M C, Lima N M, Roush D,et al.Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert[J].Environmental Microbiology,2018,20(1):259-269. |
42 | Steven B, Gallegos-Graves L V, Yeager C M,et al.Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2 [J].Environmental Microbiology,2012,14(12):3247-3258. |
43 | Steven B, Kuske C R, Gallegos-Graves L V,et al.Climate change and physical disturbance manipulations result in distinct biological soil crust communities[J].Applied and Environmental Microbiology,2015,81(21):7448-7459. |
44 | Samolov E, Baumann K, Budel B,et al.Biodiversity of algae and cyanobacteria in biological soil crusts collected along a climatic gradient in Chile using an integrative approach[J].Microorganisms,2020,8(7):1-28. |
45 | Rippin M, Borchhardt N, Williams L,et al.Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island:morphological versus molecular approaches[J].Polar Biology,2018,41(5):909-923. |
46 | Ferrenberg S, Reed S C, Belnap J.Climate change and physical disturbance cause similar community shifts in biological soil crusts[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(39):12116-12121. |
47 | Rodriguez-Caballero E, Belnap J, Buedel B,et al.Dryland photoautotrophic soil surface communities endangered by global change[J].Nature Geoscience,2018,11(3):185-189. |
48 | Cable J M, Huxman T E.Precipitation pulse size effects on Sonoran Desert soil microbial crusts[J].Oecologia,2004,141(2):317-324. |
49 | Reed S C, Coe K K, Sparks J P,et al.Changes to dryland rainfall result in rapid moss mortality and altered soil fertility[J].Nature Climate Change,2012,2(10):752-755. |
50 | Cary S C, McDonald I R, Barrett J E,et al.On the rocks:the microbiology of Antarctic dry valley soils[J].Nature Reviews Microbiology,2010,8(2):129-138. |
51 | Makhalanyane T P, Valverde A, Gunnigle E,et al.Microbial ecology of hot desert edaphic systems[J].Fems Microbiology Reviews,2015,39(2):203-221. |
52 | Angel R, Soares M I M, Ungar E D,et al.Biogeography of soil archaea and bacteria along a steep precipitation gradient[J].Isme Journal,2010,4(4):553-563. |
53 | Bay S K, Waite D W, Dong X Y,et al.Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient[J].Isme Journal,2021,15:3339-3356. |
54 | Lynch R C, Darcy J L, Kane N C,et al.Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria[J].Frontiers in Microbiology,2014,5:698. |
55 | Zhao K, Zhang B C, Li J N,et al.The autotrophic community across developmental stages of biocrusts in the Gurbantunggut Desert[J].Geoderma,2021,388:114927. |
56 | Figueroa I A, Barnum T P, Somasekhar P Y,et al.Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(1):92-101. |
57 | Tabita F R, Hanson T E, Li H Y,et al.Function,structure,and evolution of the RubisCO-like proteins and their RubisCO homologs[J].Microbiology and Molecular Biology Reviews,2007,71(4):576-600. |
58 | Codd G A, Marsden W J N.The carboxysomes (polyhedral bodies) of autotrophic prokaryotes[J].Biological Reviews of the Cambridge Philosophical Society,1984,59(3):389-422. |
59 | Cannon G C, Bradburne C E, Aldrich H C,et al.Microcompartments in prokaryotes:carboxysomes and related polyhedra[J].Applied and Environmental Microbiology,2001,67(12):5351-5361. |
60 | Tabita F R, Satagopan S, Hanson T E,et al.Distinct form I,II,III,and IV RubisCO proteins from the three kingdoms of life provide clues about RubisCO evolution and structure/function relationships[J].Journal of Experimental Botany,2008,59(7):1515-1524. |
61 | Berg I A, Keppen O I, Krasil'nikova E N,et al.Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae[J].Microbiology,2005,74(3):258-264. |
62 | Caldwell P E, MacLean M R, Norris P R.Ribulose bisphosphate carboxylase activity and a Calvin cycle gene cluster in Sulfobacillus species[J].Microbiology-SGM,2007,153:2231-2240. |
63 | Lee J H, Park D O, Park S W,et al.Expression and regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase genes in Mycobacterium sp strain JC1 DSM 3803[J].Journal of Microbiology,2009,47(3):297-307. |
64 | Greening C, Berney M, Hards K,et al.A soil actinobacterium scavenges atmospheric H2 using two membrane-associated,oxygen-dependent NiFe hydrogenases[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(11):4257-4261. |
65 | Li J Y, Jin X Y, Zhang X Y,et al.Comparative metagenomics of two distinct biological soil crusts in the Tengger Desert,China[J].Soil Biology & Biochemistry,2020,140:107637. |
66 | 刘洋荧,王尚,厉舒祯,等.基于功能基因的微生物碳循环分子生态学研究进展[J].微生物学通报,2017,44(7):1676-1689. |
67 | Campbell B J, Cary S C.Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents[J].Applied and Environmental Microbiology,2004,70(10):6282-6289. |
68 | Gagen E J, Denman S E, Padmanabha J,et al.Functional gene analysis suggests different acetogen populations in the Bovine Rumen and Tammar Wallaby forestomach[J].Applied and Environmental Microbiology,2010,76(23):7785-7795. |
69 | King G A.Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity[J].Applied and Environmental Microbiology,2003,69(12):7257-7265. |
70 | Yakimov M M, La Cono V, Denaro R.A first insight into the occurrence and expression of functional amoA and accA genes of autotrophic and ammonia-oxidizing bathypelagic Crenarchaeota of Tyrrhenian Sea[J].Deep-Sea Research Part II,2009,56(11):748-754. |
71 | Offre P, Nicol G W, Prosser J I.Community profiling and quantification of putative autotrophic thaumarchaeal communities in environmental samples[J].Environmental Microbiology Reports,2011,3(2):245-253. |
72 | Diaz M R, Van Norstrand G D, Eberli G P,et al.Functional gene diversity of oolitic sands from Great Bahama Bank[J].Geobiology,2014,12(3):231-249. |
73 | Islam Z F, Welsh C, Bayly K,et al.A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth[J].ISME Journal,2020,14:2649-2658. |
74 | Liot Q, Constant P.Breathing air to save energy-new insights into the ecophysiological role of high-affinity NiFe-hydrogenase in Streptomyces avermitilis [J].Microbiologyopen,2016,5(1):47-59. |
75 | Gadkari D, Schricker K, Acker G,et al. Streptomyces-thermoautotrophicus sp-nov,a thermophilic CO-oxidizing and H2-oxidizing obligate chemolithoautotroph[J].Applied and Environmental Microbiology,1990,56(12):3727-3734. |
76 | Weber C F, King G M.Volcanic soils as sources of novel CO-oxidizing Paraburkholderia and Burkholderia:Paraburkholderia hiiakae sp nov.,Paraburkholderia metrosideri sp nov.,Paraburkholderia paradisi sp nov.,Paraburkholderia peleae sp nov.,and Burkholderia alpina sp nov a member of the Burkholderia cepacia complex[J].Frontiers in Microbiology,2017,8:207. |
77 | King G M, Weber C F.Distribution,diversity and ecology of aerobic CO-oxidizing bacteria[J].Nature Reviews Microbiology,2007,5(2):107-118. |
78 | Greening C, Biswas A, Carere C R,et al.Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival[J].Isme Journal,2016,10(3):761-777. |
79 | Khdhiri M, Hesse L, Popa M E,et al.Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition[J].Soil Biology & Biochemistry,2015,85:1-9. |
80 | Cordero P R F, Bayly K, Leung P M,et al.Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival[J].Isme Journal,2019,13(11):2868-2881. |
81 | Delgado-Baquerizo M, Maestre F, Eldridge D J,et al.Microsite differentiation drives the abundance of soil ammonia oxidizing bacteria along aridity gradients[J].Frontiers in Microbiology,2016,7:505. |
82 | Abed R M M, Lam P, Beer D D,et al.High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman[J].Isme Journal,2013,7(9):1862-1875. |
83 | Francis C A, Roberts K J, Beman J M,et al.Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(41):14683-14688. |
84 | Verhamme D T, Prosser J I, Nicol G W.Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms[J].Isme Journal,2011,5(6):1067-1071. |
85 | Zhang L M, Hu H W, Shen J P,et al.Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J].The ISME Journal,2012,6:1032-1045. |
86 | Zhao L N, Liu Y B, Yuan S W,et al.Development of archaeal communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert,north central China[J].Soil & Tillage Research,2020,196:104443. |
87 | 刘鑫,荣晓莹,张元明.古尔班通古特沙漠生物土壤结皮对氨氧化微生物生态位的影响[J].生物多样性,2021,29(1):43-52. |
88 | Strong C L, Bullard J E, Burford M A,et al.Response of cyanobacterial soil crusts to moisture and nutrient availability[J].Catena,2013,109:195-202. |
89 | Pepe-Ranney C, Koechli C, Potrafka R,et al.Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation[J].ISME Journal,2016,10(2):287-298. |
90 | Salka I, Cuperova Z, Masin M,et al.Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes[J].Environmental Microbiology,2011,13(11):2865-2875. |
91 | Achenbach L A, Carey J, Madigan M T.Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments[J].Applied and Environmental Microbiology,2001,67(7):2922-2926. |
92 | 杨素萍,林志华,崔小华,等.不产氧光合细菌的分类学进展[J].微生物学报,2008,48(11):1562-1566. |
93 | Csotonyi J T, Swiderski J, Stackebrandt E,et al.A new environment for aerobic anoxygenic phototrophic bacteria:biological soil crusts[J].Environmental Microbiology Reports,2010,2(5):651-656. |
94 | Zarzycki J, Brecht V, Muller M,et al.Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus [J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(50):21317-21322. |
95 | Bryant D A, Costas A M G, Maresca J A,et al.Candidatus Chloracidobacterium thermophilum:an aerobic phototrophic acidobacterium[J].Science,2007,317(5837):523-526. |
96 | Csotonyi J T, Swiderski J, Stackebrandt E,et al.Novel halophilic aerobic anoxygenic phototrophs from a Canadian hypersaline spring system[J].Extremophiles,2008,12(4):529-539. |
97 | Johnson S L, Budinoff C R, Belnap J,et al.Relevance of ammonium oxidation within biological soil crust communities[J].Environmental Microbiology,2005,7(1):1-12. |
98 | Lee K C, Archer S D J, Boyle R H,et al.Niche filtering of bacteria in soil and rock habitats of the Colorado plateau desert,Utah,USA[J].Frontiers in Microbiology,2016,7:1489. |
99 | Chauhan H, Bagyaraj D J, Selvakumar G,et al.Novel plant growth promoting rhizobacteria-prospects and potential[J].Applied Soil Ecology,2015,95:38-53. |
100 | Hallenbeck P.Modern topics in the phototrophic prokaryotes:environmental and applied aspects[M]//Yurkov V,Hughes E.Aerobic Anoxygenic Phototrophs:Four Decades of Mystery.Switzerland:Springer International Publishing,2017:193-214. |
101 | Lan S, Ouyang H, Wu L,et al.Biological soil crust community types differ in photosynthetic pigment composition,fluorescence and carbon fixation in Shapotou region of China[J].Applied Soil Ecology,2017,111:9-16. |
102 | Gourion B, Delmotte N, Bonaldi K,et al.Bacterial RubisCO is required for efficient bradyrhizobium/aeschynomene symbiosis[J].PloS One,2011.6(7):e21900. |
103 | Grostern A, Alvarez-Cohen L. RubisCO-based CO2 fixation and C-1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190[J].Environmental Microbiology,2013,15(11):3040-3053. |
104 | Guo G X, Kong W D, Liu J B,et al.Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau[J].Applied Microbiology and Biotechnology,2015,99(20):8765-8776. |
105 | Miralles I, Ladron de Guevara M, Chamizo S,et al.Soil CO2 exchange controlled by the interaction of biocrust successional stage and environmental variables in two semiarid ecosystems[J].Soil Biology & Biochemistry,2018,124:11-23. |
106 | Leon-Sobrino C, Ramond J B, Maggs-Kolling G,et al.Nutrient acquisition,rather than stress response over diel cycles,drives microbial transcription in a hyper-arid Namib Desert soil[J].Frontiers in Microbiology,2019,10:1054. |
107 | Zhang B C, Zhang Y Q, Li X Z,et al.Successional changes of fungal communities along the biocrust development stages[J].Biology and Fertility of Soils,2018,54(2):285-294. |
108 | Liu L C, Liu Y B, Zhang P,et al.Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert,northwest China[J].Biogeosciences,2017,14(16):3801-3814. |
109 | Xu L, Zhu B J, Li C N,et al.Increasing relative abundance of non-cyanobacterial photosynthetic organisms drives ecosystem multifunctionality during the succession of biological soil crusts[J].Geoderma,2021,395:115052. |
110 | Su Y G, Chen Y W, Padilla F M,et al.The influence of biocrusts on the spatial pattern of soil bacterial communities:a case study at landscape and slope scales[J].Soil Biology & Biochemistry,2020,142:107721. |
111 | Deng Y, Zhang P, Qin Y J,et al.Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation[J].Environmental Microbiology,2016,18(1):205-218. |
[1] | 鲍婧婷, 孙靖尧, 王进. 生物土壤结皮中微生物群落特征综述[J]. 中国沙漠, 2022, 42(6): 33-43. |
[2] | 许文文, 赵燕翘, 王楠, 赵洋. 人工生物土壤结皮对草本植物群落组成与多样性的影响[J]. 中国沙漠, 2022, 42(5): 204-211. |
[3] | 王楠, 许文文, 赵燕翘, 赵洋. 荒漠蓝藻规模化培养试验[J]. 中国沙漠, 2022, 42(4): 181-189. |
[4] | 刘艳梅, 杨航宇, 刘凤莲, 王俊俊, 王莉红, 张亭亭. 荒漠区食细菌线虫对生物土壤结皮下土壤酶活性的影响[J]. 中国沙漠, 2022, 42(2): 77-84. |
[5] | 闫沛迎, 屈建军, 杨自辉, 肖建华, 唐进年. 不同生物气候区生物土壤结皮蓝藻物种多样性[J]. 中国沙漠, 2022, 42(2): 85-94. |
[6] | 杨航宇, 刘艳梅, 罗广元, 刘凤莲. 荒漠区食细菌线虫对生物土壤结皮下土壤微生物量的影响[J]. 中国沙漠, 2021, 41(6): 120-125. |
[7] | 周晓兵, 张丙昌, 张元明. 生物土壤结皮固沙理论与实践[J]. 中国沙漠, 2021, 41(1): 164-173. |
[8] | 赵洋, 潘颜霞, 苏洁琼, 张志山. 中国干旱区沙化土地绿色环保治理技术综述[J]. 中国沙漠, 2021, 41(1): 195-202. |
[9] | 周虹, 吴波, 高莹, 成龙, 贾晓红, 庞营军, 赵河聚. 毛乌素沙地臭柏(Sabina vulgaris)群落生物土壤结皮细菌群落组成及其影响因素[J]. 中国沙漠, 2020, 40(5): 130-141. |
[10] | 周立峰, 杨荣, 赵文智. 荒漠人工固沙植被区土壤结皮斥水性发展特征[J]. 中国沙漠, 2020, 40(3): 185-192. |
[11] | 王岩松, 刘玉冰, 王增如, 赵丽娜, 漆婧华, 张雯莉. 生物土壤结皮铁代谢微生物组成及其功能基因对演替的响应[J]. 中国沙漠, 2020, 40(3): 193-200. |
[12] | 张瑞, 周晓兵, 张元明. 生物土壤结皮对温带荒漠植物凋落物分解的影响[J]. 中国沙漠, 2019, 39(6): 151-158. |
[13] | 刘艳梅, 杨航宇, 贾荣亮, 李宜轩. 人为踩踏生物土壤结皮对土壤酶活性的影响[J]. 中国沙漠, 2019, 39(4): 54-63. |
[14] | 杨航宇, 刘长仲, 刘艳梅, 杨昊天. 荒漠区踩踏生物土壤结皮对土壤微生物量的影响[J]. 中国沙漠, 2019, 39(2): 35-44. |
[15] | 司守霞, 李宜轩, 回嵘, 刘立超, 谢敏, 王艳莉. 降雪对荒漠生物土壤结皮光合生理特性的影响[J]. 中国沙漠, 2018, 38(3): 560-567. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn