Please wait a minute...
img

官方微信

高级检索
中国沙漠  2020, Vol. 40 Issue (5): 130-141    DOI: 10.7522/j.issn.1000-694X.2020.00015
    
毛乌素沙地臭柏Sabina vulgaris群落生物土壤结皮细菌群落组成及其影响因素
周虹a2(),吴波a2(),高莹a2,成龙a,贾晓红a2,庞营军a,赵河聚a
1.中国林业科学研究院,荒漠化研究所,北京 100091
2.中国林业科学研究院,荒漠生态系统与全球变化重点实验室,北京 100091
Composition and influencing factors of the biological soil crust bacterial communities in the Sabina vulgaris community in Mu Us Sandy Land
Hong Zhoua2(),Bo Wua2(),Ying Gaoa2,Long Chenga,Xiaohong Jiaa2,Yingjun Panga,Heju Zhaoa
a.Institute of Desertification Studies / b. Key Laboratory of Desert Ecosystem and Global Change,Chinese Academy of Forestry,Beijing 100091,China
 全文: PDF(2876 KB)   HTML
摘要:

臭柏(Sabina vulgaris)是毛乌素沙地的主要固沙植物。臭柏群落中广泛分布的生物土壤结皮对维持沙地生态系统稳定具有重要意义。细菌是生物土壤结皮的重要组成部分,在维持生物土壤结皮结构和功能方面发挥着重要作用,但细菌群落组成及多样性随生物土壤结皮发育的变化尚不完全清楚。采用Illumina测序技术,分析了毛乌素沙地臭柏群落不同发育阶段生物土壤结皮(微生物结皮、藻结皮、地衣结皮和苔藓结皮)与裸沙的细菌群落组成及多样性,探究影响细菌群落结构的主要环境因子。结果表明:在毛乌素沙地随生物土壤结皮发育,细菌群落的多样性显著增加(P<0.05),苔藓结皮细菌群落多样性最高。生物土壤结皮的细菌群落以变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)和酸杆菌门(Acidobacteria)为优势菌群,这4个门的相对丰度均占各发育阶段生物土壤结皮细菌总丰度的78%以上。随生物土壤结皮发育,细菌群落组成发生显著变化,抗逆性较强的寡营养类群,如厚壁菌门(Firmicutes)和变形菌门(Proteobacteria)的相对丰度逐渐降低(P<0.05);富营养类群,如放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)和绿弯菌门(Chloroflexi)的相对丰度逐渐增加(P<0.05);蓝藻门(Cyanobacteria)在藻结皮阶段的相对丰度显著高于其他发育阶段(P<0.05)。群落组成的变化预示着生物土壤结皮细菌群落的生态功能由结皮发育初期通过促进土壤颗粒胶结来增加土壤表面的稳定性,转变为结皮发育后期通过固定碳氮和凋落物分解来促进生态系统的物质循环。细菌群落是生物土壤结皮发育过程中水分和养分变化的敏感指标,结皮层含水量、全碳、有机碳、全氮、硝态氮和全磷含量是促使生物土壤结皮细菌群落组成发生变化的主要环境因子。

关键词: 生物土壤结皮发育过程细菌群落Illumina 测序毛乌素沙地    
Abstract:

Sabina vulgaris is the dominant sand-binding shrub species in the Mu Us Sandy Land. The widely distributed biological soil crusts (BSCs) in Sabina vulgaris community are of great significance to maintain the stability of desert ecosystem. Bacteria are an important part and play important roles in maintaining the structure and function of BSCs. However, the changes of diversity and composition of the bacterial communities with the development of BSCs are not fully understood. In this study, Illumina sequencing was used to analyze bacterial communities’ diversity and composition of four different developmental stages of BSCs (microbial, algae, lichen and moss crusts) and bare sand in Sabina vulgaris community in the Mu Us Sandy Land, and to explore the main environmental factors influencing bacterial community structure. Results showed that in the Mu Us Sandy Land, the diversity of bacterial communities significantly increased with the development of BSCs (P<0.05), and reached the highest value in the moss crusts. Bacterial communities of BSCs were dominated by the phyla of Proteobacteria, Actinobacteria, Cyanobacteria and Acidobacteria, as their relative abundance accounted for more than 78% of the total bacterial abundance in different developmental stages of BSCs. Bacterial community compositions significantly changed with the development of BSCs. In particular, the relative abundance of Proteobacteria and Firmicutes, which belonged to the oligotrophic bacteria in stress resistance, significantly decreased from bare sand to moss crusts,whereas the relative abundance ofActinobacteria, Acidobacteria, Bacteroidetes and Chloroflexi, which belonged to the eutrophic bacteria, significantly increased. The relative abundance of Cyanobacteria in algae crusts was significantly higher than that in other developmental stages (P<0.05). The change of bacterial community composition indicated that the community ecological function changed with the development of BSCs, from increasing the stability of soil surface by promoting soil particle cementation to promoting the material circulation of the ecosystem by promoting carbon and nitrogen fixation and litter decomposition. Bacterial communities were sensitive indicators of soil water and nutrient changes during the development of BSCs. Mantel test showed that the bacterial community structure in BSCs was affected by soil water content, total carbon, organic carbon, total nitrogen, nitrate nitrogen and total phosphorus content.

Key words: biological soil crusts    developmental process    bacterial community    Illumina sequencing    Mu Us Sandy Land
收稿日期: 2020-02-12 出版日期: 2020-09-28
ZTFLH:  Q938.1  
基金资助: 国家重点研发计划项目(2016YFC0500806);中国林业科学研究院荒漠化所结余资金(S2018JY-3)
通讯作者: 吴波     E-mail: hongzhou199@163.com;wubo@caf.ac.cn
作者简介: 周虹(1991—),女,青海西宁人,博士研究生,主要从事土壤微生物生态学方面的研究。E-mail: hongzhou199@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周虹
吴波
高莹
成龙
贾晓红
庞营军
赵河聚

引用本文:

周虹,吴波,高莹,成龙,贾晓红,庞营军,赵河聚. 毛乌素沙地臭柏Sabina vulgaris群落生物土壤结皮细菌群落组成及其影响因素[J]. 中国沙漠, 2020, 40(5): 130-141.

Hong Zhou,Bo Wu,Ying Gao,Long Cheng,Xiaohong Jia,Yingjun Pang,Heju Zhao. Composition and influencing factors of the biological soil crust bacterial communities in the Sabina vulgaris community in Mu Us Sandy Land. Journal of Desert Research, 2020, 40(5): 130-141.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2020.00015        http://www.desert.ac.cn/CN/Y2020/V40/I5/130

项目裸沙微生物结皮藻结皮地衣结皮苔藓结皮
土壤含水量/%5.27±0.11d12.67±1.50c15.11±0.90c18.66±1.78b22.25±1.49a
有机碳/(g·kg-10.80±0.07d6.24±0.41c11.74±0.83b16.47±1.35b20.92±0.58a
全碳/(g·kg-12.27±0.18d15.44±1.64c20.05±2.01c24.22±0.52b28.71±3.93a
全氮/(g·kg-10.37±0.11c0.76±0.15b0.76±0.09b0.79±0.09b1.33±0.18a
硝态氮/(mg·kg-11.61±0.03a1.60±0.02a1.32±0.07b0.87±0.07c0.68±0.10c
铵态氮/(mg·kg-10.48±0.160.51±0.190.55±0.090.53±0.040.58±0.15
全磷/(g·kg-10.51±0.05b0.53±0.06b0.65±0.06a0.66±0.04a0.68±0.02a
pH7.07±0.03a7.01±0.01a7.02±0.01a6.91±0.03b6.89±0.01b
表1  不同发育阶段结皮层理化性质(平均值±标准误差)
图1  不同发育阶段的生物土壤结皮微生物生物量碳和微生物生物量氮误差线表示标准误差(n=3),不同字母表示差异显著(P<0.05)
图2  不同发育阶段生物土壤结皮细菌多样性指数BS,裸沙;MIC,微生物结皮;AC,藻结皮;LC,地衣结皮;MC,苔藓结皮。不同字母表示差异显著(P<0.05)
图3  不同发育阶段生物土壤结皮细菌群落主坐标分析(PcoA)
样品分组ANOSIMMRPPAdonis
RPAPR2P
裸沙-微生物结皮0.9860.0020.0090.0030.7460.002
裸沙-藻结皮0.9260.0140.0870.0210.5940.018
裸沙-地衣结皮0.9960.0080.0510.0040.6840.006
裸沙-苔藓结皮0.9790.0030.1600.0280.7930.022
微生物结皮-藻结皮0.3700.0480.0130.0410.1840.039
微生物结皮-地衣结皮0.9260.0090.1060.0390.3640.028
微生物结皮-苔藓结皮0.7780.0280.1200.0260.3760.004
藻结皮-地衣结皮0.2220.0450.0120.0230.2100.047
藻结皮-苔藓结皮0.3700.0390.0220.0350.1950.036
地衣结皮-苔藓结皮0.4810.0330.1040.0200.3580.011
表2  不同发育阶段生物土壤结皮细菌群落组成的不相似检验
图4  不同发育阶段土壤结皮在门水平(A)和属水平(B)细菌群落组成
分类水平物种相对丰度/%
裸沙微生物结皮藻结皮地衣结皮苔藓结皮
门水平放线菌 (Actinobacteria)10.3±0.5c16.8±2.2b19.0±0.3a19.9±1.5a22.3±1.5a
酸杆菌 (Acidobacteria)3.1±0.3c4.2±0.8b5.6±0.7a7.1±0.4a8.0±0.3a
拟杆菌 (Bacteroidetes)3.3±0.9b3.4±1.0b7.7±1.4a7.8±0.5a7.9±0.4a
绿弯菌 (Chloroflexi)1.2±0.3b1.2±0.1b2.1±0.2a2.2±0.2a2.2±0.1a
蓝藻 (Cyanobacteria)0.3±0.1d2.0±0.8c7.2±0.7a6.4±0.4b1.8±0.6c
变形菌 (Proteobacteria)69.3±2.3a57.2±1.7a47.1±8.1b47.3±1.8b48.1±1.5b
厚壁菌 (Firmicutes)7.0±1.1a6.4±0.7a3.6±0.3b3.7±0.5b3.2±1.0c
芽单胞菌(Gemmatimonadetes)1.3±0.7a2.6±0.7a3.6±0.5a3.1±0.6a3.4±1.5a
浮霉菌 (Planctomycetes)0.5±0.2a1.5±0.5a0.9±0.5a1.1±0.3a1.6±0.2a
属水平鞘氨醇单胞菌(Sphingomonas)0.7±0.3c3.0±0.3b3.6±1.3ab3.9±0.6a4.7±0.6a
马赛菌 (Massilia)0.6±0.2d1.3±0.3c3.2±0.3b6.9±1.4a4.1±1.6a
微枝形杆菌 (Microvirga)0.7±0.2c3.4±0.6b3.1±0.5b4.1±0.5b5.7±0.3a
微鞘藻 (Microcoleus)0.1±0.1c1.3±0.4b3.8±1.0a1.5±0.2b0.3±0.1c
罗尔斯顿菌 (Ralstonia)38.0±5.5a6.6±0.4b3.3±0.5c1.6±0.8c1.5±0.1c
戴尔福特菌 (Delftia)7.4±0.8a6.5±0.4a2.4±0.3b1.7±0.4b0.4±0.1c
不动杆菌 (Acinetobacter)3.0±1.4a0.7±0.6b1.2±1.6ab1.3±0.1ab0.7±0.4b
Rubellimicrobium0.6±0.5a2.4±1.1a2.4±1.4a2.1±0.6a1.8±0.7ab
红色杆菌 (Rubrobacter)0.9±0.3b3.1±0.5a2.6±1.0a1.8±0.8ab2.3±1.1a
表3  不同发育阶段生物土壤结皮细菌的相对丰度
含水量全碳有机碳全氮硝态氮铵态氮全磷pH
细菌群落0.539**0.424*0.517*0.352*0.441*0.1670.392*0.044
放线菌(Actinobacteria)0.521*0.329**0.550**0.525*0.332*0.0450.368*0.394
酸杆菌(Acidobacteria)0.3040.543*0.498*0.636*0.109*0.1430.3790.152*
拟杆菌(Bacteroidetes)0.646**0.536*0.800*0.3040.115*0.1770.386-0.211
绿弯菌(Chloroflexi)0.296*0.4360.369*0.5000.2090.2460.761*0.143
蓝藻(Cyanobacteria)0.2460.2680.7420.3320.235*0.696*0.6960.199
变形菌(Proteobacteria)-0.246*-0.443-0.634-0.593**0.321*-0.234-0.864*-0.322
厚壁菌(Firmicutes)-0.654*-0.150-0.391-0.3360.177-0.028-0.293-0.252
芽单胞菌(Gemmatimonadetes)0.2710.2390.2840.4290.2730.3140.5110.442
浮霉菌(Planctomycetes)0.3640.4860.3360.686*0.3530.1020.8680.032
表4  生物土壤结皮细菌群落与土壤环境因子的相关性
1 李新荣,张景光,王新平,等.干旱沙漠区土壤微生物结皮及其对固沙植被影响的研究[J].植物学报,2000,42(9):965-970.
2 Liu L,Liu Y,Peng Z,et al.Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, northwest China[J].Biogeosciences,2017,14(16):1-25.
3 Belnap J.The world at your feet: desert biological soil crusts[J].Frontiers in Ecology & the Environment,2003,1(4):181-189.
4 李新荣,谭会娟,回嵘,等.中国荒漠与沙地生物土壤结皮研究[J].科学通报,2018,63(23):16-30.
5 Faist A M,Herrick J E,Belnap J,et al.Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem[J].Ecosphere,2017,8(3):e01691.
6 Adessi A,Carvalho R C D,Philippis R D,et al.Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts[J].Soil Biology & Biochemistry,2018,116:67-69.
7 都军,李宜轩,杨晓霞,等.腾格里沙漠东南缘生物土壤结皮对土壤理化性质的影响[J].中国沙漠,2018(1):111-116.
8 肖巍强,董志宝,陈颢,等.生物土壤结皮对库布齐沙漠北缘土壤粒度特征的影响[J].中国沙漠,2017(5):970-977.
9 Jorge-Villar S,Edwards H.Microorganism response to stressed terrestrial environments: a raman spectroscopic perspective of extremophilic life strategies[J].Life Open Access Journal,2013,3(1):276-294.
10 Mager D M,Thomas A D.Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes[J].Journal of Arid Environments,2011,75(2):91-97.
11 Mu?oz-Rojas M,Román J R,Roncero-Ramos B, et al.Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration[J].Science of the Total Environment,2018,636:1149-1154.
12 Elliott D R,Thomas A D,Hoon S R,et al.Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari[J].Biodiversity & Conservation,2014,23(7):1709-1733.
13 Yu J,Glazer N,Steinberger Y.Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert[J].Biology & Fertility of Soils,2014,50(2):285-293.
14 Liu L C,Liu Y B,Hui R,et al.Recovery of microbial community structure of biological soil crusts in successional stages of Shapotou desert revegetation, northwest China[J].Soil Biology & Biochemistry,2017,107:125-128.
15 Zhang B C,Zhou X B,Zhang Y M.Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J].Journal of Arid Land,2015,7(1):101-109.
16 Nagy M L,Alejandro P,Ferran G P.The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ)[J].Fems Microbiology Ecology,2010,54(2):233-245.
17 Abed R M M,Kharusi S A,Schramm A,et al.Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman[J].Fems Microbiology Ecology,2010,72(3):418-428.
18 Zhang B C,Kong W D,Wu N,et al.Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China[J].Journal of Basic Microbiology,2016,56(6):670-679.
19 Maier S,Schmidt T S B,Zheng L,et al.Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities[J].Biodiversity & Conservation,2014,23(7):1735-1755.
20 Gundlapally S R,Garciapichel F.The community and phylogenetic diversity of biological soil crusts in the colorado plateau studied by molecular fingerprinting and intensive cultivation[J].Microbial Ecology,2006,52(2):345-357.
21 Redfield E,Barns S M,Belnap J,et al.Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau&nbsp[J].Fems Microbiology Ecology,2006,40(1):55-63.
22 Zhang Q Y,Wang Q,Ouyang H L,et al.Pyrosequencing reveals significant changes in microbial communities along the ecological succession of biological soil crusts in the Tengger desert of China[J].Pedosphere,2018,28(2):186-198.
23 杨丽娜,赵允格,明姣,等.黄土高原不同侵蚀类型区生物结皮中蓝藻的多样性[J].生态学报,2013,33(14):4416-4424.
24 Hagemann M,Henneberg M,Felde V J M N L,et al.Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel-effects of local conditions and disturbance[J].Fems Microbiology Ecology,2017,93(6):fiw228.
25 Zhang R F,Cui Z,Li S.Advance in methods for research on soil microbial community structure[J].Soils,2004,36(5):476-437.
26 Mueller R C,Belnap J,Kuske C R.Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland[J].Frontiers in Microbiology,2015,6:891.
27 吴波.毛乌素沙地的景观动态与荒漠化成因研究[D].北京:中国科学院地理科学与资源研究所,1997.
28 陈昌笃.走向宏观生态学:陈昌笃论文集[M].北京:科学出版社,2009.
29 张军红,吴波.油蒿与臭柏沙地生物结皮对土壤理化性质的影响[J].东北林业大学学报,2012,40(3):58-61.
30 郭爱莲,张卫兵,朱志诚,等.固沙植物臭柏的死亡原因及保护对策[J].水土保持通报,2002,22(2):16-18.
31 北京大学地理系,中国科学院自然资源综合考察委员会,中国科学院兰州沙漠研究所,等.毛乌素沙区自然条件及其改良利用[M].北京:科学出版社,1983.
32 Wu B,Ci L J.Landscape change and desertification development in the Mu Us Sandland, Northern China[J].Journal of Arid Environments,2002,50(3):429-444.
33 王林和,党宏忠,张国盛,等.中国天然臭柏群落的分布与生物量特征[J].内蒙古农业大学学报(自然科学版),2014(1):37-45.
34 Lawley B,Tannock G W.Analysis of 16S rRNA gene amplicon sequences using the QIIME software package[J].Methods in Molecular Biology,2017,1537:153.
35 杨航宇,刘艳梅,王廷璞,等.生物土壤结皮对荒漠区土壤微生物数量和活性的影响[J].中国沙漠,2017,37(5):950-960.
36 Zhang B,Zhou X,Zhang Y.Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J].Journal of Arid Land,2015,7.
37 Xu X,Thornton P E,Post W M.A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J].Global Ecology & Biogeography,2013,22(6):737-749.
38 Mogul R,Vaishampayan P,Bashir M,et al.Microbial community and biochemical dynamics of biological soil crusts across a gradient of surface coverage in the central Mojave Desert[J].Frontiers in Microbiology,2017,8:1974.
39 李靖宇,张琇.腾格里沙漠不同生物土壤结皮微生物多样性分析[J].生态科学,2017,36(3):36-42.
40 Cameron W,Klaus S,Samiran B,et al.Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J].Nature Communications,2019,10:4841.
41 Zhang B C,Kong W,Wu N,et al.Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China[J].Journal of Basic Microbiology,2016,56(6):670-679.
42 Blaire S,Kuske C R,La Verne G G,et al.Climate change and physical disturbance manipulations result in distinct biological soil crust communities[J].Applied & Environmental Microbiology,2015,81(21):7448-7459.
43 Kuske C R,Yeager C M,Johnson S,et al.Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands[J].Isme Journal,2012,6(4):886-897.
44 Mandic-Mulec I,Stefanic P,van Elsas J D.Ecology of bacillaceae[J].Microbiol Spectrum,2015,3(2):TBS-0017-2013.
45 Maier S,Tamm A,Wu D,et al.Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts[J].Isme Journal,2018,12(4):1032-1046.
46 Pepe-Ranney C,Koechli C,Potrafka R,et al.Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation[J].Isme Journal,2016,10(2):287-298.
47 Maier S,Muggia L,Kuske C R,et al. Bacteria and non-lichenized fungi within biological soil crusts Biological soil crusts : an organizing principle in drylands[M]. Berlin, Germany:. Springer, 2016:81-100.
48 Lauber C L,Hamady M,Knight R,et al.Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J].Applied & Environmental Microbiology,2009,75(15):5111.
49 Makhalanyane T P,Angel V,Eoin G,et al.Microbial ecology of hot desert edaphic systems[J].Fems Microbiology Reviews,2015,39(2):203-221.
50 Lee O O,Wang Y,Yang J,et al.Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea[J].Isme Journal,2011,5(4):650.
51 Belnap J,Lange O L.Biological Soil Crusts:Structure, Function, and Management[M].Berlin,Germany:Springer-Verlag,2002.
52 Couradeau E,Giraldo-Silva A,Martini F D,et al.Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus , and the formation of a nitrogen-fixing cyanosphere[J].Microbiome,2019,7(1):55.
53 Yeager C M,Kornosky J L,Morgan R E,et al.Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA[J].Fems Microbiology Ecology,2007,60(1):85-97.
54 Lan S,Li W,Zhang D,et al.Effects of drought and salt stresses on man-made cyanobacterial crusts[J].European Journal of Soil Biology,2010,46(6):381-386.
55 Pasternak Z,al ashhab A,Gatica J,et al.Spatial and temporal biogeography of soil microbial communities in arid and semiarid regions[J].PloS One,2013,8:e69705.
56 Dumbrell A J,Nelson M,Helgason T,et al.Relative roles of niche and neutral processes in structuring a soil microbial community[J].Isme Journal,2010,4(3):337-345.
57 Yao M,Rui J,Li J,et al.Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe[J].Soil Biology and Biochemistry,2014,79:81-90.
[1] 王姣月,秦树高,张宇清. 毛乌素沙地植被水分利用效率的时空格局[J]. 中国沙漠, 2020, 40(5): 120-129.
[2] 李夙超,邱曼,李孝泽,刘景德,王立民,胡杨,李志刚,牛改红. 准噶尔盆地西缘白杨河上游莫合台冲积洪积扇戈壁的特征、时代及过程[J]. 中国沙漠, 2020, 40(4): 1-9.
[3] 许明静,吕萍,肖南,杨军怀,刘铮瑶,冯淼彦,梁准. 毛乌素沙地西北部植被覆盖对沙丘移动的影响[J]. 中国沙漠, 2020, 40(4): 71-80.
[4] 周立峰, 杨荣, 赵文智. 荒漠人工固沙植被区土壤结皮斥水性发展特征[J]. 中国沙漠, 2020, 40(3): 185-192.
[5] 王岩松, 刘玉冰, 王增如, 赵丽娜, 漆婧华, 张雯莉. 生物土壤结皮铁代谢微生物组成及其功能基因对演替的响应[J]. 中国沙漠, 2020, 40(3): 193-200.
[6] 赵雅姣, 刘晓静, 吴勇, 童长春. 豆禾牧草间作根际土壤养分、酶活性及微生物群落特征[J]. 中国沙漠, 2020, 40(3): 219-228.
[7] 李想, 苏志珠, 马义娟, 张彩霞, 柳苗苗. 毛乌素沙地东南缘全新世气候不稳定性[J]. 中国沙漠, 2020, 40(2): 109-117.
[8] 张瑞, 周晓兵, 张元明. 生物土壤结皮对温带荒漠植物凋落物分解的影响[J]. 中国沙漠, 2019, 39(6): 151-158.
[9] 徐丹蕾, 丁靖南, 伍永秋. 1989-2014年毛乌素沙地湖泊面积[J]. 中国沙漠, 2019, 39(6): 40-47.
[10] 刘艳梅, 杨航宇, 贾荣亮, 李宜轩. 人为踩踏生物土壤结皮对土壤酶活性的影响[J]. 中国沙漠, 2019, 39(4): 54-63.
[11] 杨航宇, 刘长仲, 刘艳梅, 杨昊天. 荒漠区踩踏生物土壤结皮对土壤微生物量的影响[J]. 中国沙漠, 2019, 39(2): 35-44.
[12] 韩瑞, 苏志珠, 李想, 柳苗苗, 马义娟. 粒度和磁化率记录的毛乌素沙地东缘全新世气候变化[J]. 中国沙漠, 2019, 39(2): 105-114.
[13] 白壮壮, 崔建新. 近2 000 a毛乌素沙地沙漠化及成因[J]. 中国沙漠, 2019, 39(2): 177-185.
[14] 庞营军, 吴波, 贾晓红, 石麟, 高达布希拉图, 李世忠. 毛乌素沙地风况及输沙势特征[J]. 中国沙漠, 2019, 39(1): 62-67.
[15] 刘振宇, 靳鹤龄, 刘冰, 薛文萍. 粒度特征揭示的中全新世以来毛乌素沙地演化过程[J]. 中国沙漠, 2019, 39(1): 88-96.