Please wait a minute...
img

官方微信

高级检索
中国沙漠  2017, Vol. 37 Issue (6): 1219-1226    DOI: 10.7522/j.issn.1000-694X.2017.00097
天气与气候     
基于极限学习机的干旱区潜在蒸发量模拟
王婷婷1,2,3, 冯起1, 温小虎1, 郭小燕1
1. 中国科学院西北生态环境资源研究院 内陆河流域生态水文重点实验室, 甘肃 兰州 730000;
2. 兰州交通大学 经济管理学院, 甘肃 兰州 730070;
3. 中国科学院大学, 北京 100049
Numerical Simulation of Evaporation of Arid Region Based on Extreme Learning Machine
Wang Tingting1,2,3, Feng Qi1, Wen Xiaohu1, Guo Xiaoyan1
1. Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
2. School of Economics & Management, Lanzhou Jiaotong University, Lanzhou 730000, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(3558 KB)  
摘要: 准确地模拟干旱区潜在蒸发量,对区域水资源的合理开发利用与生态环境保护具有十分重要的意义。以极限学习机(ELM)模型为基础,以古浪河流域的乌鞘岭、古浪两个典型气象观测站点为对象,将气象因子的不同组合作为输入参数,构建了适合当地的潜在蒸发量模型。利用构建的模型对乌鞘岭、古浪气象观测站点的月潜在蒸发量进行了模拟,将模拟结果与支持向量机(SVM)模型模拟结果进行了对比,发现ELM模型在干旱区月潜在蒸发量模拟中有更好的适用性,可为干旱地区潜在蒸发量的估算提供新方法和思路,是资料有限条件下潜在蒸发估算的有效方法。
关键词: 干旱区潜在蒸发模拟极限学习机    
Abstract: The simulated accurately evaporation at the arid regions was essential to rationally develop and utilize water resources and the ecosystem protection. The meteorological data at Wushaoling and Gulang weather stations in Shiyang River Basin were used in this study. Based on the extreme learning machine (ELM) model, the varying combination of meteorological factors were inputted to the model. An evaporation model also was established to simulate monthly evaporation at the two weather stations, and the results were compared with support vector machine (SVM) model to evaluate the simulation ability of ELM model. Our study demonstrated that the ELM model had better applicability in simulating monthly evaporation at arid regions. It can provide a new method and idea for calculating evaporation, and it is a desirable and effective method to calculate evaporation at the arid regions with insufficient data.
Key words: arid region    evaporation    numerical simulation    extreme learning machine
收稿日期: 2017-06-15 出版日期: 2017-11-20
:  P332.2  
基金资助: 国家重点研发计划项目(2017YFC0404305);中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC031);国家自然科学基金项目(41601029)
通讯作者: 冯起(E-mail:qifeng@lzb.ac.cn)     E-mail: qifeng@lzb.ac.cn
作者简介: 王婷婷(1980-),女,甘肃古浪人,博士研究生,研究方向为生态经济学。E-mail:wtingting1028@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王婷婷
冯起
温小虎
郭小燕

引用本文:

王婷婷, 冯起, 温小虎, 郭小燕. 基于极限学习机的干旱区潜在蒸发量模拟[J]. 中国沙漠, 2017, 37(6): 1219-1226.

Wang Tingting, Feng Qi, Wen Xiaohu, Guo Xiaoyan. Numerical Simulation of Evaporation of Arid Region Based on Extreme Learning Machine. JOURNAL OF DESERT RESEARCH, 2017, 37(6): 1219-1226.

链接本文:

http://119.78.100.150/zgsm/CN/10.7522/j.issn.1000-694X.2017.00097        http://119.78.100.150/zgsm/CN/Y2017/V37/I6/1219

[1] 廖杰,王涛,薛娴,等.黑河调水以来额济纳盆地湖泊蒸发量[J].中国沙漠,2015,35(1):228-232.
[2] 柯珂,金晓媚,高萌萌,等.以改进SEBS模型估算苏木吉林南湖的水面蒸发[J].中国沙漠,2015,35(1):233-239.
[3] Raziei T,Pereira L S.Estimation of ET0 with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran[J].Agricultural Water Management,2013,121:1-18.
[4] Falamarzi Y,Palizdan N,Huang Y F,et al.Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs)[J].Agricultural Water Management,2014,140:26-36.
[5] Tang R S,Etzion Y.Comparative studies on the water evaporation rate from a wetted surface and that from a free water surface[J].Building and Environment,2004,39(1):77-86.
[6] 陈伯龙,左洪超,高晓清,等.20 cm蒸发皿蒸发量的数学物理模型研究[J].地球物理学报,2013,56(2):422-430.
[7] Guven A,Kisi O.Monthly pan evaporation modeling using linear genetic programming[J].Journal of Hydrology,2013,503:178-185.
[8] Kisi Ö.Pan evaporation modeling using least square support vector machine,multivariate adaptive regression splines and M5 model tree[J].Journal of Hydrology,2015,528:312-320.
[9] Kişi Ö.Evolutionary neural networks for monthly pan evaporation modeling[J].Journal of Hydrology,2013,498:36-45.
[10] Kişi Ö,Tombul M.Modeling monthly pan evaporations using fuzzy genetic approach[J].Journal of Hydrology,2013,477:203-212.
[11] Wang L,Kisi O,Zounemat-Kermani M,et al.Pan evaporation modeling using six different heuristic computing methods in different climates of China[J].Journal of Hydrology,2017,544:407-427.
[12] 侯志强,杨培岭,苏艳平,等.基于最小二乘支持向量机的ET0模拟计算[J].水利学报,2011,42(6):743-749.
[13] 冯禹,王守光,崔宁博,等.基于遗传算法优化神经网络的参考作物蒸散量预测模型[J].资源科学,2014,12:2624-2630.
[14] 张育斌,魏正英,张磊,等.耦合模拟退火优化最小二乘支持向量机的日参照蒸散量模拟计算[J].节水灌溉,2016,9:133-138.
[15] Goyal M K,Bharti B,Quilty J,et al.Modeling of daily pan evaporation in sub tropical climates using ANN,LS-SVR,Fuzzy Logic,and ANFIS[J].Expert Systems with Applications,2014,41(11):5267-5276.
[16] Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1):489-501.
[17] Deo R C,Şahin M.Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia[J].Atmospheric Research,2015,153:512-525.
[18] Lima A R,Cannon A J,Hsieh W W.Nonlinear regression in environmental sciences using extreme learning machines:a comparative evaluation[J].Environmental Modelling & Software,2015,73:175-188.
[19] Yuan P,Chen H,Zhou Y,et al.Generalization ability of extreme learning machine with uniformly ergodic Markov chains[J].Neurocomputing,2015,167:528-534.
[20] 赵福年,王莺,张龙,等.1960-2009年石羊河流域气候变化特征[J].气象与环境学报,2014,5:131-140.
[21] Chang C C,Lin C J.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,27:1-27.
[1] 张莹花, 康才周, 刘世增, 唐进年, 魏林源, 李金辉. 沙地云杉(Picea mongolica)农田防护林带不同配置模式的防风效果[J]. 中国沙漠, 2017, 37(5): 859-866.
[2] 张明艳, 贾昕, 查天山, 秦树高, 吴雅娟, 任才. 油蒿(Artemisia ordosica)光系统Ⅱ光化学效率对去除降雨的响应[J]. 中国沙漠, 2017, 37(3): 475-482.
[3] 康丽泰, 陈思宇. 中国北方一次沙尘天气过程的数值模拟[J]. 中国沙漠, 2017, 37(2): 321-331.
[4] 陈宁, 王新平. 干旱区生态系统跃变:以输沙势为外部驱动力[J]. 中国沙漠, 2017, 37(1): 73-80.
[5] 王莺, 张强, 王劲松, 张雷. 基于分布式水文模型(SWAT)的土地利用和气候变化对洮河流域水文影响特征[J]. 中国沙漠, 2017, 37(1): 175-185.
[6] 袁鑫鑫, 王海峰, 雷加强, 李生宇, 康向光, 马学喜. 不同间距双排尼龙阻沙网防风效应的风洞模拟[J]. 中国沙漠, 2016, 36(5): 1238-1246.
[7] 丁建丽, 陈文倩, 陈芸. 干旱区土壤盐渍化灾害预警——以渭-库绿洲为例[J]. 中国沙漠, 2016, 36(4): 1079-1086.
[8] 岳煜斐, 曾秋兰, 李振山, 卢傅安. 挟雨风对高速列车气动特性及运行稳定性影响的数值模拟[J]. 中国沙漠, 2016, 36(4): 943-950.
[9] 宋洁, 春喜, 白雪梅, 斯琴毕力格. 中国沙漠粒度分析研究综述[J]. 中国沙漠, 2016, 36(3): 597-603.
[10] 梁晓燕, 王乃昂, 李卓仑, 常佩静, 贾鹏, 牛震敏. 腾格里沙漠周边地区1960-2012年气候变化特征[J]. 中国沙漠, 2016, 36(2): 474-482.
[11] 陈静, 李玉霖, 冯静, 苏娜, 赵学勇. 温度和水分对科尔沁沙质草地土壤氮矿化的影响[J]. 中国沙漠, 2016, 36(1): 103-110.
[12] 高云飞, 赵传燕, 彭守璋, 马文瑛, 李文娟, 袁亚鹏. 黑河上游天涝池流域草地蒸散发模拟及其敏感性分析[J]. 中国沙漠, 2015, 35(5): 1338-1345.
[13] 尹本丰, 张元明, 陶冶. 白梭梭(Haloxylon persicum)灌丛下雾凇的散布格局及其对土壤含水量的影响[J]. 中国沙漠, 2015, 35(4): 951-958.
[14] 黄新成, 刘博, 王旭峰, 熊英. 基于起跳初速度分布的沙颗粒浓度廓线的数值模拟[J]. 中国沙漠, 2015, 35(3): 534-541.
[15] 郭小燕, 冯起, 李宗省, 郭瑞, 贾冰. 敦煌盆地降水稳定同位素特征及水汽来源[J]. 中国沙漠, 2015, 35(3): 715-723.