[1] Visher G S.Grain size distributions and depositional processes[J].Journal of Sedimentary Research,1969,39(3):1074-1106. [2] Sahu B.Depositional mechanisms from the size analysis of clastic sediments[J].Journal of Sedimentary Research,1964,34(1):73-83. [3] Folk R L.Longitudinal dunes of the northwestern edge of the Simpson Desert,Northern Territory,Australia,1.geomorphology and grain size relationships[J].Sedimentology,1971,16(1/2):5-54. [4] Gao S,Collins M B.Net sediment transport patterns inferred from grain-size trends,based upon definition of “transport vectors”[J].Sedimentary Geology,1992,81(1/2):47-60. [5] Purkait B.The use of grain-size distribution patterns to elucidate aeolian processes on a transverse dune of Thar Desert,India[J].Earth Surface Processes and Landforms,2010,35(5):525-530. [6] Langford R P,Gill T E,Jones S B.Transport and mixing of eolian sand from local sources resulting in variations in grain size in a gypsum dune field,White Sands,New Mexico,USA[J].Sedimentary Geology,2016,333(1):184-197. [7] Passega R.Grain sze representation by CM patterns as a geological tool[J].Journal of Sedimentary Research,1964,34(4):830-847. [8] Sun D,Bloemendal J,Rea D K,et al.Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments,and numerical partitioning of the sedimentary components[J].Sedimentary Geology,2002,152(3):263-277. [9] Boulay S,Colin C,Alain T,et al.Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144)[C]//Proceedings of the Ocean Drilling Program,2003. [10] Weltje G.End-member modeling of compositional data:Numerical-statistical algorithms for solving the explicit mixing problem[J].Mathematical Geology,1997,29(4):503-549. [11] 王兆夺,黄春长,杨红瑾,等.六盘山东麓晚更新世以来黄土粒度指示的物源特征及演变[J].地理科学,2018,38(5):818-826. [12] 程良清,宋友桂,李越,等.粒度端元模型在新疆黄土粉尘来源与古气候研究中的初步应用[J].沉积学报,2018,36(6):1148-1156. [13] Li T,Li T.Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis[J].Geo-Marine Letters,2018,38(2):167-178. [14] 张晓东,季阳,杨作升,等.南黄海表层沉积物粒度端元反演及其对沉积动力环境的指示意义[J].中国科学:地球科学,2015,45(10):1515-1523. [15] 王继和.库姆塔格沙漠综合科学考察[M].兰州:甘肃科学技术出版社,2008. [16] 董治宝,苏志珠,钱广强,等.库姆塔格沙漠风沙地貌[M].北京:科学出版社,2011. [17] 库姆塔格沙漠综合科学考察队.库姆塔格沙漠研究[M].北京:科学出版社,2012. [18] 苏志珠,梁爱民,马义娟,等.库姆塔格沙漠典型线形沙丘粒度特征[J].中国沙漠,2016,36(4):877-884. [19] 徐志伟,鹿化煜,赵存法,等.库姆塔格沙漠地表物质组成、来源和风化过程[J].地理学报,2010,65(1):53-64. [20] 夏训诚.库姆塔格沙漠的基本特征[M]//罗布泊科学考察与研究.北京:科学出版社,1987. [21] 屈建军,左国朝,张克存,等.库姆塔格沙漠形成演化与区域新构造运动关系研究[J].干旱区地理,2005,28(4):424-428. [22] 刘虎俊,王继和,廖空太,等.库姆塔格沙漠的“羽毛状沙丘”形态的观测[J].地学前缘,2007,3:190-196. [23] Dong Z,Qu J,Wang X,et al.Pseudo-feathery dunes in the Kumtagh Desert[J].Geomorphology,2008,100(3/4):328-334. [24] 唐进年,王继和,苏志珠,等.库姆塔格沙漠羽毛状沙丘表面沙粒度分布特征[J].干旱区地理,2008,31(6):918-925. [25] 屈建军,廖空太,董光荣,等.库姆塔格沙漠羽毛状沙垄形态及其在分类系统中的位置[J].中国科学:地球科学,2011,41(8):1150-1159. [26] Qian G,Dong Z,Zhang Z,et al.Morphological and sedimentary features of oblique zibars in the Kumtagh Desert of Northwestern China[J].Geomorphology,2015,228:714-722. [27] Dong Z,Qian G,Yan P,et al.Gravel bodies in the Kumtagh Desert and their geomorphological implications[J].Environmental Earth Sciences,2009,59(8):1771-1779. [28] Wang Z,Lai Z,Qu J.Inverted relief landforms in the Kumtagh Desert of northwestern China:a mechanism to estimate wind erosion rates[J].Geological Journal,2017,52(1):131-140. [29] 康延臻,陈世红,张莹,等.2008—2013年库姆塔格沙漠及阿尔金山降水特征[J].中国沙漠,2015,35(1):203-210. [30] 胡钰玲,宁贵财,康彩燕,等.库姆塔格沙漠周边地区极端降水的时空变化特征[J].中国沙漠,2017,37(3):536-545. [31] Dong Z,Zhang Z,Lü P,et al.Analysis of the wind regime in context of dune geomorphology for the Kumtagh Desert,Northwest China[J].Zeitschrift Für Geomorphologie,2012,56(4):459-475. [32] Yang Z,Qian G,Han Z,et al.Variation in grain-size characteristics as a function of wind direction and height in the Sanlongsha dune field of the northern Kumtagh Desert,China[J].Aeolian Research,2019,40:53-64. [33] 杨转玲,钱广强,董治宝,等.库姆塔格沙漠北部三垄沙地区风沙运动特征[J].中国沙漠,2018,38(1):58-67. [34] 屈建军,郑本兴,俞祁浩,等.罗布泊东阿奇克谷地雅丹地貌与库姆塔格沙漠形成的关系[J].中国沙漠,2004,24(3):294-300. [35] 俄有浩,王继和,严平,等.库姆塔格沙漠古水系变迁与沙漠地貌的形成[J].地理学报,2008,63(7):725-734. [36] 唐进年,苏志珠,丁峰,等.库姆塔格沙漠的形成时代与演化[J].干旱区地理,2010,33(3):325-333. [37] Blott S J,Pye K.GRADISTAT:a grain size distribution and statistics package for the analysis of unconsolidated sediments[J].Earth Surface Processes and Landforms,2001,26(11):1237-1248. [38] Folk R L,Ward W C.Brazos river bar:a study in the significance of grain size parameters[J].Journal of Sedimentary Research,1957,27(1):3-26. [39] Zhang X,Zhou A,Wang X,et al.Unmixing grain-size distributions in lake sediments:a new method of endmember modeling using hierarchical clustering[J].Quaternary Research,2017,89(1):1-9. [40] Yu S,Colman S,Li L.BEMMA:a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J].Mathematical Geosciences,2015,48(6):1-19. [41] Paterson G,Heslop D.New methods for unmixing sediment grain size data[J].Geochemistry,Geophysics,Geosystems,2015,16(12):4494-4506. [42] 成都地质学院陕北队.沉积岩(物)粒度分析及其应用[M].北京:地质出版社,1978. [43] Warren A.Observations on dunes and bimodal sands in the Ténéré Desert[J].Sedimentology,1972,19(1/2):37-44. [44] Binda P L,Hildred P R.Bimodal grain-size distributions of some Kalahari-type sands from Zambia[J].Sedimentary Geology,1973,10(3):233-237. [45] Lancaster N,Teller J T.Interdune deposits the Namib Sand Sea[J].Sedimentary Geology,1988,51:91-107. [46] Ahlbrandt T,Fryberger S.Sedimentary features and significance of interdune deposits[M]//Ethridge F G,Flores R M.Recent and Ancient Non-Marine Depositional Environments:Models for Exploration.Tulsa,USA:SEPM,1981:293-314. [47] Jerolmack D,Reitz M,Martin R.Sorting out Abrasion in a gypsum Dune Field[J].Journal of Geophysical Research,2011,116(F02003):1-15. [48] Kuenen P H.Experimental abrasion 4:eolian action[J].The Journal of Geology,1960,68(4):427-449. [49] Bagnold R A.The surface movement of blown sand in relation to meteorology[J].Research Council of Israel Special Publication,1953,2:89-93. [50] Lü P,Narteau C,Dong Z,et al.Unravelling raked linear dunes to explain the coexistence of bedforms in complex dunefields[J].Nature Communications,2017,8(14239):1-9. |