[1] |
Houghton R A, Skole D L, Nobre C A,et al.Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J].Nature,2000,403(6767):301-304.
|
[2] |
冯晓娟,戴国华,刘婷,等.从生物地球化学视角理解土壤碳封存的机制和潜在途径[J].中国科学:地球科学,2024,54(11):3421-3432.
|
[3] |
Ma T, Zhu S S, Wang Z H,et al.Divergent accumulation of microbial necromass and plant lignin components in grassland soils[J].Nature Communications,2018,9:3480.
|
[4] |
Hicks N, Vik U, Taylor P,et al.Using prokaryotes for carbon capture storage[J].Trends in Biotechnology,2017,35(1):22-32.
|
[5] |
Plaza C, Pegoraro E, Bracho R,et al.Direct observation of permafrost degradation and rapid soil carbon loss in tundra[J].Nature Geoscience,2019,12(8):627-631.
|
[6] |
张杰,李敏,敖子强,等.中国西部干旱区土壤有机碳储量估算[J].干旱区资源与环境,2018,32(9):132-137.
|
[7] |
Xu H K, Zhang Y J, Shao X Q,et al.Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands:a meta-analysis[J].Science of the Total Environment,2022,803:150030.
|
[8] |
李新荣,谭会娟,回嵘,等.中国荒漠与沙地生物土壤结皮研究[J].科学通报,2018,63(23):2320-2334.
|
[9] |
Zhang Y M, Chen J, Wang L,et al.The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang,China[J].Journal of Arid Environments,2007,68(4):599-610.
|
[10] |
Belnap J, Gillette D A.Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in Southeastern Utah[J].Land Degradation & Development,1997,8(4):355-362.
|
[11] |
张清杭,吕杰,马媛,等.古尔班通古特沙漠不同区域藻类结皮微生物结构和潜在功能[J].生态学报,2024,44(14):6317-6330.
|
[12] |
Liu Y B, Zhao L N, Wang Z R,et al.Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the Tengger Desert[J].Soil Biology and Biochemistry,2018,126:40-48.
|
[13] |
李凯凯,张丙昌,赵康,等.毛乌素沙地固碳功能菌群落随生物结皮发育阶段的演变特征[J].生态学报,2024,44(3):1177-1190.
|
[14] |
Rossi F, Olguin E J, Diels L,et al.Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification[J].New Biotechnology,2015,32(1):109-120.
|
[15] |
Kheirfam H.Increasing soil potential for carbon sequestration using microbes from biological soil crusts[J].Journal of Arid Environments,2020,172:104022.
|
[16] |
郑云普,张丙昌,赵建成,等.具鞘微鞘藻在荒漠藻结皮形成过程中的作用[J].生态学报,2010,30(6):1655-1664.
|
[17] |
许文文,赵燕翘,王楠,等.人工蓝藻结皮对沙区表层土壤酶活性及其恢复速率的影响[J].生态学报,2023,43(7):2856-2864.
|
[18] |
熊文君,徐琳,张丙昌,等.生物土壤结皮结构、功能及人工恢复技术[J].干旱区资源与环境,2021,35(2):190-195.
|
[19] |
张丙昌,王敬竹,张元明,等.水分对具鞘微鞘藻构建人工藻结皮的作用[J].应用生态学报,2013,24(2):535-540.
|
[20] |
邓杰文,石杨,李斌,等.微生物在沙化土壤修复中的应用研究进展[J].应用与环境生物学报,2022,28(5):1367-1374.
|
[21] |
韩东东,郝振宇,高广海,等.寡营养细菌及其生态作用和应用的研究进展[J].微生物学通报,2012,39(4):526-535.
|
[22] |
Zhao K, Zhang B C, Li J N,et al.The autotrophic community across developmental stages of biocrusts in the Gurbantunggut Desert[J].Geoderma,2021,388:114927.
|
[23] |
刘娟,刘华民,卓义,等.毛乌素沙地1990-2014年景观格局变化及驱动力[J].草业科学,2017,34(2):255-263.
|
[24] |
李宜坪.毛乌素沙地生物结皮及其下伏土壤的养分特征与碳储量研究[D].杨凌:西北农林科技大学,2018.
|
[25] |
肖媛媛,冯薇,乔艳桂,等.固沙灌木林地土壤微生物群落特征对土壤多功能性的影响[J].生物多样性,2023,31(4):128-141.
|
[26] |
翟树琛,王天娇,李鑫豪,等.毛乌素沙地黑沙蒿水分利用效率环境调控:从叶片到生态系统[J].应用生态学报,2024,35(4):997-1006.
|
[27] |
陈翔,刘树林,彭飞,等.中分辨率遥感像元尺度生物土壤结皮覆盖与植被及土壤间的交互关系[J].生态学报,2022,42(18):7336-7348.
|
[28] |
Bai Y X, She W W, Miao L,et al.Soil microbial interactions modulate the effect of Artemisia ordosica on herbaceous species in a desert ecosystem, Northern China[J].Soil Biology and Biochemistry,2020,150:108013.
|
[29] |
王莉,秦树高,张宇清,等.生物土壤结皮对毛乌素沙地油蒿群落土壤水分的影响[J].北京林业大学学报,2017,39(3):48-56.
|
[30] |
郭珺,樊芳芳,王立革,等.固碳微生物菌株的分离鉴定及其固碳能力测定[J].生物技术通报,2019,35(1):90-97.
|
[31] |
卢彩鸽,董红平,张殿朋,等.解淀粉芽胞杆菌MH71摇瓶发酵培养基及发酵条件优化[J].中国生物防治学报,2015,31(3):369-377.
|
[32] |
林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010.
|
[33] |
冯克宽,王明谊.黑曲霉Sta-122菌株产纤维素酶的研究[J].西北师范大学学报(自然科学版),1991(1):61-65.
|
[34] |
付丽,朱红雨,杜明楠,等.秸秆降解菌株的筛选、鉴定及生物学特性研究[J].中国农业大学学报,2018,23(12):39-49.
|
[35] |
黄臣,韩玲娟,梁银萍,等.达乌里胡枝子四株耐盐碱根际促生菌的鉴定及其促生作用[J].草地学报,2023,31(4):1036-1047.
|
[36] |
任良栋,许团辉,徐权汉,等.一株高产DHA菌株的筛选及其发酵条件优化[J].中国油脂,2016,41(5):60-64.
|
[37] |
孙永琦.毛乌素沙地地衣结皮层微生物的群落结构及其固碳功能[D].北京:北京林业大学,2019.
|
[38] |
吴楠,潘伯荣,张元明,等.古尔班通古特沙漠生物结皮中土壤微生物垂直分布特征[J].应用与环境生物学报,2005(3):349-353.
|
[39] |
Wang Y, Hong Y, Tian Y L,et al.Changes in bacterial community composition and soil properties altered the response of soil respiration to rain addition in desert biological soil crusts[J].Geoderma,2022,409:115635.
|
[40] |
李靖宇,张肖冲,陈韵,等.腾格里沙漠东南缘藻结皮与藓结皮放线菌多样性及其潜在代谢功能[J].生态学报,2020,40(5):1590-1601.
|
[41] |
张娅,曹成亮,李荣鹏,等.糖丝菌属放线菌研究进展[J].微生物学报,2022,62(5):1600-1612.
|
[42] |
An D S, Wang L, Kim M S. Solirubrobacter ginsenosidimutans sp nov., isolated from soil of a ginseng field[J].International Journal of Systematic and Evolutionary Microbiology,2011,61(11):2606-2609.
|
[43] |
Jones S E, Elliot M A. Streptomyces exploration: competition, volatile communication and new bacterial behaviours[J].Trends in Microbiology,2017,25(7):522-531.
|
[44] |
张雅丽,张丙昌,赵康,等.毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J].生物多样性,2023,31(8):83-93.
|
[45] |
代芳平,李师翁.链霉菌次级代谢物及其应用研究进展[J].生物技术通报,2014,30(3):30-35.
|
[46] |
Liu Z, Zhang Y Q, Fa K Y,et al.Desert soil bacteria deposit atmospheric carbon dioxide in carbonate precipitates[J].Catena,2018,170:64-72.
|
[47] |
黄倩.黄土高原土壤固碳微生物及其固定CO2的机理[D].杨凌:西北农林科技大学,2021.
|
[48] |
冉光娟.荔波喀斯特洞穴沉积物中可培养固碳固氮细菌多样性分析及新种鉴定[D].贵阳:贵州师范大学,2022.
|
[49] |
李彦林,陈吉祥,周永涛,等.西北半干旱荒漠草原与耕地土壤可培养微生物多样性及分布特征比较[J].农业资源与环境学报,2016,33(3):244-252.
|
[50] |
刘振.毛乌素沙地土壤固定大气二氧化碳的微生物途径[D].北京:北京林业大学,2019.
|
[51] |
Lynn T M, Ge T D, Yuan H Z,et al.Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems[J].Microbial Ecology,2017,73(3):645-657.
|
[52] |
Liu Z, Sun Y F, Zhang Y Q,et al.Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert[J].Soil Biology and Biochemistry,2018,125:156-166.
|
[53] |
Zhao K, Kong W D, Wang F,et al.Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils[J].Soil Biology and Biochemistry,2018,127:230-238.
|
[54] |
Long X E, Yao H Y, Wang J,et al.Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils[J].Environmental Science & Technology,2015,49(12):7152-7160.
|
[55] |
Nowak M E, Beulig F, von Fischer J,et al.Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette[J].Biogeosciences,2015,12(23):7169-7183.
|
[56] |
程澳琪.固碳微生物的分离及其对不同状态岩溶湿地土壤的固碳能力研究[D].武汉:华中科技大学,2022.
|
[57] |
Huang W C, Liu Y, Zhang X X,et al.Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota[J].Nature Communications,2021,12(1):5281.
|
[58] |
Oda Y, Nelson W C, Alexander W G,et al.A Rhodopseudomonas strain with a substantially smaller genome retains the core metabolic versatility of its genus[J].Applied and Environmental Microbiology,2025,91(4):e02056-24.
|
[59] |
冉光娟,吴庆珊,方正,等.喀斯特洞穴沉积物中可培养固碳和固氮细菌多样性分析[J].云南大学学报(自然科学版),2024,46(2):379-391.
|