Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2013, Vol. 33 Issue (4): 1064-1070    DOI: 10.7522/j.issn.1000-694X.2013.00150
Biology and Soil     
Effect of Drought Stress on Growth of Different Plant Type Maize (Zea mays) in the Bell-mouthed Period
PENG Yun-ling, ZHAO Xiao-qiang, REN Xu-wei, LI Jian-ying
Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
Download:  PDF (1499KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Study was made on the morphology and the physiological-biochemical  characteristics of two plant types that were compact type-Langhuang and Chang 7-2 and flat type-TS141 in the bell-mouthed period of maize under drought stress. The results showed that: (1)Drought stress reduced the leaf angle, leaf length,leaf width and plant height of the three maize inbred lines and increased the leaf orientation value. The leaf angle, leaf length,leaf width and plant height of the type-TS141 had greater reduction and leaf orientation value had smaller increase after drought stress, compared with the compact type-Langhuang and Chang 7-2. (2)The shoot fresh weight, root fresh weight, fresh/dry ratio of weight, root length, and number of roots decreased, and root-shoot ratio increased with different degree in the three maize inbred lines after drought stress; The compact type-Langhuang and Chang 7-2 had smaller changes compared with the flat type-TS141. In addition, the compact type-Langhuang and Chang 7-2 could still keep normal root morphology under drought stress. (3) After drought stress, leaves relative conductivity, malondialdehyde content, proline concent, soluble sugar content, protective enzyme activities increased with different degree in the three maize inbred lines. Leaves relative conductivity and malondialdehyde content had smaller change in Langhuang and Chang7-2 than in TS141. Proline concent,soluble sugar content and protective enzyme activities had larger change in Langhuang and Chang 7-2 than in TS141. (4) The development of male and female spike were subject to the influence of different degree in the three maize inbred lines under drought stress, but the compact type-Langhuang and Chang 7-2 were less influenced than flat type-TS141, and filaments quantity was much more than TS141.

Key words:  drought stress      maize      plant type      bell-mouthed period      growth     
Received:  23 January 2013      Published:  06 March 2013
ZTFLH:  S513  

Cite this article: 

PENG Yun-ling, ZHAO Xiao-qiang, REN Xu-wei, LI Jian-ying. Effect of Drought Stress on Growth of Different Plant Type Maize (Zea mays) in the Bell-mouthed Period. JOURNAL OF DESERT RESEARCH, 2013, 33(4): 1064-1070.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00150     OR     http://www.desert.ac.cn/EN/Y2013/V33/I4/1064

[1]袁佐清,张建勇.水分胁迫对玉米大喇叭口期生长的影响[J].干旱地区农业研究,2007,25(4):235-237,242.



[2]于永涛,张吉民,石云素,等.利用不同群体对玉米株高和叶片夹角的QTL分析[J].玉米科学,2006,14(2):88-92.



[3]路明,周芳,谢传晓,等.玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析[J].遗传,2007,29(9):1131-1138.



[4]郑祖平,黄玉碧,田孟良.不同供氮水平下玉米株型相关性状的QTLs定位和上位性效应分析[J].玉米科学,2007,15(2):14-18.



[5]刘鹏飞,蒋锋,王汉宁,等.玉米叶夹角和叶向值的QTL定位[J].核农学报,2012,26(2):231-237.



[6]刘春华.玉米形态性状与抗旱性相关性分析[J].现代农业科技,2011,13:57-58.



[7]张振平,孙世贤,张悦,等.玉米叶部形态指标与抗旱性的关系研究[J].玉米科学,2009,17(3):68-70.



[8]何海军,寇思荣,王晓娟.干旱胁迫对不同株型玉米光合特性及产量性状的影响[J].干旱地区农业研究,2011,29(3):63-66,74.



[9]盛宏达,奚雷,王韶唐.小麦子粒发育初期土壤水分亏缺对植株各部位光合作用的影响[J].植物生理学报,1986,12(2):109-115.



[10]Pepper G Z,Pearce R B,Mock J J.Leaf orientation and yield of maize[J].Crop Science,1977,17(6):883-886



[11]张宪政,陈凤玉,王荣富.植物生理学试验技术[M].沈阳:辽宁科学技术出版社,1994.



[12]张智,夏宜平,常乐,等.3种观赏草在自然失水胁迫下的生理变化与耐旱性关系[J].东北林业大学学报,2007,35(12):17-20.



[13]Liu F,Stutzel H.Biomass partitioning,specific leaf area,and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress[J].Scientia Horticulturae,2004,102:15-27.



[14]徐炳成,山仑.苜蓿和沙打旺苗期需水及其根冠比[J].草地学报,2003,11(1):78-82.



[15]Liu H S.Deficiency of water can enhance root respiration rate of drought-sensitive but not drought-tolerant spring wheat[J].Agriculture Water Management,2004,64:41-48.



[16]Lucero D W.Effects of deficit and plant interaction on morphological growth parameters and yield of white clover and ryegrass[J].European Journal of Agronomy,1999,11:167-177.



[17]Kage H,Kochler M.Root growth and dry matter partitioning of cauliflower under drought stress conditions:measurement and simulation[J].European Journal of Agronomy,2004,20:379-394.



[18]Li R H,Guo P G,Michael B,et al.Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley[J].Agricultural Sicences in China,2006,10:751-757.



[19]Guo P G,Baum M,Varshney R K,et al.QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowerring drought[J].Euphytica,2008,163:203-214.



[20]Demirevska K,Simova-Stoilova L,Vassileva V,et al.Rubisco and some chaperone protein responses to water stress and real watering at early seedling growth of drought sensitive and tolerant wheat varieties[J].Plant Growth Regulation,2008,56:97-106.



[21]赵坤,董守坤,刘丽君,等.干旱胁迫对春大豆开花期根系生理特性的影响[J].大豆科学,2010,6(3):437-439,443.



[22]吕金印,郭涛.水分胁迫对不同品种甜高粱幼苗保护酶活性等生理特性的影响[J].干旱地区农业研究,2010,7(4):89-93.



[23]赵哈林,赵学勇,张铜会.沙漠化过程中植物的适应对策及植被稳定性机理[M].北京:海洋出版社,2004.



[24]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学报,1991,27(2):84-90.



[25]Walter L.植物生态生理学[M].北京:中国农业大学出版社,1997.



[26]Gao S,Zhang H,Tian Y,et al.Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity[J].Plant Cell Reports,2008,27(11):1787-1795.



[27]Su J,Wu R.Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis[J].Plant Science,2004,166:941-948.



[28]Kishor P,Sangam S,Amrutha R,et al.Regulation of proline biosynthesis,degradation,uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance[J].Current Science,2005,88:424-438.



[29]张继澍.植物生理学[M].北京:高等教育出版社,2006.



[30]姜慧芳,任小平.干旱胁迫对花生叶片SOD活性和蛋白质的影响[J].作物学报,2004,30(2):169-174.



[31]张有福,陈拓,费贯清,等.盐度对三种荒漠植物渗透调节物质积累影响的研究[J].中国沙漠,2007,27(5):787-790.



[32]刘玉冰,李新荣,谭会娟,等.荒漠地区两种生态型芦苇叶片的抗氧化生理特性分析[J].中国沙漠,2011,31(2):277-281.



[33]马彦军,段慧荣,曹致中,等.冬青种子萌发期抗逆性研究[J].中国沙漠,2011,31(4):963-967.



[34]田魏龙,蒋志荣.不同沙棘品种对干旱胁迫的生理生化响应[J].中国沙漠,2011,31(2):1215-1220.



[35]杨树德,周瑞莲,左进城,等.不同冬小麦对盐处理和干旱胁迫交互作用响应的差异性分析[J].中国沙漠,2012,32(4):947-954.



[36]Edmeades G O,Bolaos J,Chapman SC,et al.Selection improves drought tolerance in tropical maize populations.I.Gains in biomass,grain yield and harvest index[J].Crop Science,1999,39,1306-1315.



[37]B nziger M,Edmeades G O,Beck D,et al.Breeding for drought and nitrogen stress tolerance in maize[M].Mexico:CIMMYT,2000.



[38]Wang C R,Yang A F,Yue G D,et al.Enhanced expression of phospholipase C1 (ZmPLC1) improves drought tolerance in transgenic maize[J].Planta,2008,227:1127-1140.



[39]Li B,Wei A,Song C,et al.Heterologous expression of the TsVP gene improves the drought resistance of maize[J].Plant Biotechnology Journal,2008,6:146-159.

No Suggested Reading articles found!