Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2013, Vol. 33 Issue (5): 1340-1348    DOI: 10.7522/j.issn.1000-694X.2013.00197
Biology and Soil     
Biomass Allocation Patterns of Four Shrubs in Desert Grassland
YANG Hao-tian, LI Xin-rong, LIU Li-chao, JIA Rong-liang, WANG Zeng-ru, LI Xiao-Jun, LI Gang
Shapotou Desert Experiment and Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Download:  PDF (3114KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Biomass mainly reflected the accumulated energy by plant. Plant species have evolved specialized strategies to regulate biomass allocation among various organs or between above- and belowground biomass(R/S). Biomass allocation can affect carbon turnover among different pools and the terrestrial ecosystem carbon cycling. We investigated biomass allocation patterns and characters of root distribution of four common shrubs on individual levels in desert area, southeast of the Tengger Desert, China. Our results indicated that the biomass allocation strategy in above ground organs were different among four shrubs, the R/S were also different. These results reflect every shrub have evolved their unique growth strategy. The canopy and biomass increased and R/S decreased with the growth of shrubs. Shrubs may have higher competition needs for limited resources at the young than older stage. Root biomass distribution are different among Kalidium foliatum (in the uppermost 0-30 cm of the soil), Salsola passerina (in the uppermost 0-50 cm of the soil), Ceratoides latens and Reaumuria soongorica (in the uppermost 0-70 cm of the soil). Reduced major axis analysis showed that the slopes of the relationship between above- and belowground biomass of Ceratoides lateens, Salsola passerine and Reaumuria soongorica close to 1, which support  isometric scaling hypothesis. However, the slope of the relationship between above- and belowground biomass of Kalidium foliatum was significantly different from 1.0, which dont support this hypothesis. There is a significant linear relationship between above- and belowground biomass after logarithmic transformation. The relationship can be used to estimate belowground biomass effectively.

Key words:  belowground to aboveground biomass ratio (R/S)      biomass allocation      desert grassland      isometric relationship      Tengger Desert     
Received:  29 January 2013      Published:  28 February 2013
ZTFLH:  Q948.122  

Cite this article: 

YANG Hao-tian, LI Xin-rong, LIU Li-chao, JIA Rong-liang, WANG Zeng-ru, LI Xiao-Jun, LI Gang. Biomass Allocation Patterns of Four Shrubs in Desert Grassland. JOURNAL OF DESERT RESEARCH, 2013, 33(5): 1340-1348.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00197     OR     http://www.desert.ac.cn/EN/Y2013/V33/I5/1340

[1]程堂仁,马钦彦,冯仲科,等.甘肃小陇山森林生物量研究[J].北京林业大学学报,2007,29(1):31-36.



[2]刘江华,徐学选,杨光,等.黄土丘陵区小流域次生灌丛群落生物量研究[J].西北植物学报,2003,23(8):1362-1366.



[3]郑景明,张育红.林分生物量研究综述[J].辽宁林业科技,1998,(4):43-45.



[4]郑绍伟,唐敏,邹俊辉,等.灌术群落及生物量研究综述[J].成都大学学报(自然科学版),2007,26(3):189-192.



[5]魏文俊,尤文忠,张慧东,等.辽宁省落叶松人工林生物量碳库特征[J].东北林业大学学报,2011,39(6):26-29.



[6]Bazzaz F A,Grace J.Plant Resource Allocation[M].San Diego,USA:Academic Press,1997.



[7]Zhang D Y.Researches on Theoretical Ecology[M].Beijing:China Higher Education Press,2000.



[8]Tilman D.Plant Strategies the Dynamics and Structure of Plant Communities[M].Princeton,New Jersey,USA:Princeton University Press,1988.



[9]Krner C.Alpine Plant Life:Functional Plant Ecology of High Mountain Ecosystems[M].Berlin Heidelberg,Germany:Springer-Verlag,1999:1-338.



[10]Silvertown J W,Doust J L.Introduction to Plant Population Biology[M].Oxford:Blackwell Scientific Publications,1993:116-140.



[11]Cairns M A,Brown S,Helmer E H,et al.Root biomass allocation in the world 's upland forests[J].Oecologia,1997,111:1-11.



[12]Gilmanov T G,PartonW J,Ojima D S.Testing the "CENTURY" ecosystem level model on data sets from eight grassland sites in the former USSR representing awide climate/soil gradient[J].Ecological Modelling,1997,96:191-210.



[13]McConnaughay K D M,Coleman J S.Biomass allocation in plants:ontogeny or optimality?a test along three resource gradients[J]. Ecology,1999,80:2581-2593.



[14]黎磊,周道玮,盛连喜.密度制约决定的植物生物量分配格局[J].生态学杂志,2011,30(8):1579-1589.



[15]Müller I,Schimid B,Weiner J.The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants[J]. Perspectives in Plant Ecology Evolution and Systematics,2000,3:115-127.



[16]Ryser P,Eek L.Consequences of phenotypic plasticity vs.interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources[J].American Journal of Botany,2000,87:402-411.



[17]Wilson J B.A review of evidence on the control of shoot:root ratio,in relation to models[J].Annul of Botany,1988,61:433-449.



[18]Niklas K J.Modelling below- and above-ground biomass for non-woody and woody plants[J].Annul of Botany,2005,95:315-321.



[19]Niklas K J.A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories[J].New Phytologist,2006,171:27-40.



[20]Cheng D L,Niklas K J.Above- and below-ground biomass relationships across 1534 forested communities[J].Annul of Botany,2007,99:95-102.



[21]Williams R J,Zerihun A,Montagu K D,et al.Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands:towards general predictive equations[J].Australian Journal of Botany,2005,53(7):607-619.



[22]马文红,方精云.内蒙古温带草原的根冠比及其影响因素[J].北京大学学报 (自然科学版),2006,42(6):774-778.



[23]Yang Y H,Fang J Y,Ji C J,et al.Above- and belowground biomass allocation in Tibetan grasslands[J].Journal of Vegetation Science,2009,20:177-184.



[24]Yang Y H,Fang J Y,Ma W H,et al.Large-scale pattern of biomass partitioning across Chinaks grasslands[J].Global Ecology and Biogeography,2010,19:268-277.



[25]Mokany K,RaisonR J,Prokushkin A S.Critical analysis of root:shoot ratios in terrestrial biomes[J].Global Change Biology,2005,11:1-13.



[26]马文红,杨元合,贺金生.内蒙古温带草地生物量及其与环境因子的关系[J].中国科学(C辑:生命科学),2008,38(1):84.



[27]候学煜.中华人民共和国植被图简要说明[M].北京:地图出版社,1982.



[28]陈遐林,马钦彦,康峰峰,等.山西太岳山典型灌木林生物量及生产力研究[J].林业科学研究,2002,15(3):304-309.



[29]俞海生,李宝军,张宝文,等.灌木林主要生态作用的探讨[J].内蒙古林业科技,2003,(4):15-18.



[30]Warton D I,Wright I J,Falster D S,et al.Bivariate line-fitting methods for allometry:review[J].Biological Reviews,2006,81:259-291.



[31]Falster D S,Warton D I,Wright I J.SMATR:standardized major axis tests and routines[DB/OL].http//www.boi.mq.edu.au/ecology/SMATR(2006).



[32]Enquist B J,Niklas K J.Global allocation rules for patterns of biomass partitioning in seed plants[J].Science,2002,295:1517-1520.



[33]Gale M R,Grigal D F.Vertical root distributions of northern tree species in relation to successional status[J].Canadian Journal of Forest Research,1987,17:829-834.



[34]Mokany K,Raison R J,Prokushkin A S.Critical analysis of root:shoot ratios in terrestrial biomass[J].Global Change Biology,2006,12(1):84-96.



[35]Schmid I.The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech[J].Basic and Applied Ecology,2002,3(4):339-346.



[36]Schenk H J,Jackson R B.Rooting depths,lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems[J].Journal of Ecology,2002,90(3):480-494.



[37]Bloom A J,Chapin F S,Mooney H A.Resource limitation in plants-an economic analogy[J].Annual Review of Ecology and Systematics,1985,16:363-392.



[38]Chapin F S,Bloom A J,Field C B,et al.Plant responses to multiple environmental factors[J].BioScience,1987,37:49-57.



[39]Bloom R G,Mallik A U.Indirect effects of black spruce (Picea mariana) cover on community structure and function in sheep laurel (Kalmia angustifolia) dominated heath of eastern Canada[J].Plant and Soil,2004,265:279-293.



[40]Walter H.The water relations of plants[J].Journal of Ecology,1933,21(1):214-216.



[41]Pallardy S G.Closely Related Woody Plants Water Deficits and Plant Growth [M].New York:Academic Press,1981,511-548.



[42]Chapin F S III,Autumn K,Pugnaire F,et al.Evolution of suites of traits in response to environmental stress[J].American Naturalist,1993,142 (Supp.l):78-92.



[43]Poorter H,Nagel O.The role of biomass allocation in the growth response of plants to different levels of light,CO2 ,nutrients and water:a quantitative review[J].Australian Journal of Plant Physiology,2000,6:595-607.



[44]贾恢先,赵曼容,慕勤国.甘肃河西走廊几种典型盐地植物的解剖学研究[J].甘肃农业大学学报,1983,18(4):64-67.



[45]徐炳成,山仑.苜蓿和沙打旺苗期需水及其根冠比[J].草地学报,2003,(1):78-82.



[46]Gedroc J J,Mc Connaughay K D M,Coleman J S.Plasticity in root/shoot partitioning:optimal,ontogenetic or both[J].Functional Ecology,1996,10:44-50.



[47]弋良鹏,马健,李彦.盐胁迫对3种荒漠盐生植物苗期根系特征及活力的影响[J].中国科学(D辑:地球科学),2006,36 (增刊):86-94.



[48]Lewis S L,Tanner E V J.Effects of above-and belowground competition on growth and survival of rain forest tree seedlings[J].Ecology,2000,81(9):2525-2538.



[49]Weiner J.Allocation,plasticity and allometry in plants[J].Perspectives in Plant Ecology,Evolution and Systematics,2004,6:207-215.



[50]钟芳,王红赤,李俊年,等.兰州市南北两山水热条件对侧柏根系分布的影响[J].中国沙漠,2006,26(4):559-563.



[51]蒋礼学,李彦.三种荒漠灌木根系的构形特征与叶性因子对干旱生境的适应性比较[J].中国沙漠,2008,28(6):1118-1124.



[52]Wang L,Niu K C,Yang Y H,et al.Patterns of above-and belowground biomass allocation in China’s grasslands:evidence from individual-level observations[J].Science China Life sciences,2010,53:851-857.



[53]Jackson R B,Canadell J,Ehleringer J R,et al.A global analysis of root distributions for terrestrial biomes[J].Oecologia,1996,108:389-411.



[54]张宇清,朱清科,齐实,等.梯田生物埂几种灌木根系的垂直分布特征[J].北京林业大学学报,2006,28(002):34-38.

No Suggested Reading articles found!