Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2015, Vol. 35 Issue (3): 830-836    DOI: 10.7522/j.issn.1000-694X.2014.00059
    
Spatial and Temporal Pattern of NPP and Its Relationship with Climate Factors in Tibet, China
Bianduo1, Yang Xiuhai1, Pubuciren1, Luobu1, Jilv2, Liu Kuijun2
1. Tibet Institute of Plateau Atmospheric and Environmental Science, Lhasa 850001;
2. Ali Meteorological Bureau, Ali 850006
Download:  PDF (3089KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on MOD17A3 NPP remote sensing data and meteorological data such as temperature, precipitation, the spatiotemporal distribution and variation characteristics of vegetation net primary productivity (NPP) and their relationships with climate factor was studied in Tibet from 2000-2012 by using of GIS and statistical methods. The results show that the NPP of vegetation in Tibet varies from 119.3 to 148.4 gC·m-2·a-1, with an average of 135.2 gC·m-2·a-1; anomaly analysis shows that the NPP was not significant upward trend in recent years, and its value is gradually decreasing from the southeast to the northwest on the whole based on the Tibet. The NPP slightly increases for almost 10.70% and remain unchanged which occupied 61.11% of total region during the past 13 years. Considering the NPP of different vegetation types, broadleaved forest has the largest value ranging from 1 185.2 gC·m-2·a-1 to 1 430.2 gC·m-2·a-1, then mixed forest with varies from 535.1 gC·m-2·a-1 to 741.2 gC·m-2·a-1, followed by savannas, coniferous forest, farmland, grassland and shrub. The NPP over Tibet has a better positive and negative relation with the annual mean temperature and the annual precipitation respectively. All vegetation types were positively correlated with mean annual temperature, which grassland NPP and the average annual temperature correlation coefficient of 0.88, followed by coniferous forest was 0.76, the worst correlation is savanna(r=0.13). The correlation analysis indicates that the NPP of different vegetation types are negatively related to the annual precipitation except the NPP of savanna (r=0.26), where the grass maximum correlation coefficient (r=-0.79), followed by coniferous forest (r=-0.73).
Key words:  Tibet      NPP      temporal and spatial distribution      climate factor      MODIS     
Received:  18 February 2014      Published:  20 May 2015
ZTFLH:  X173  

Cite this article: 

Bianduo, Yang Xiuhai, Pubuciren, Luobu, Jilv, Liu Kuijun. Spatial and Temporal Pattern of NPP and Its Relationship with Climate Factors in Tibet, China. JOURNAL OF DESERT RESEARCH, 2015, 35(3): 830-836.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2014.00059     OR     http://www.desert.ac.cn/EN/Y2015/V35/I3/830

[1] Field C B, Behrenfeld M J, Randerson J T, et al.Primary production of the biosphere:integrating terrestrial and oceanic components[J].Science, 1998, 281(5374):237-240.
[2] 李庆, 王洪涛, 刘文, 等.以HJ-1卫星遥感数据估算高寒草地植被净第一性生产力的潜力评估--以若尔盖草地为例[J].中国沙漠, 2013, 33(4):1250-1255.
[3] 赵俊芳, 延晓冬, 朱玉洁.陆地植被净初级生产力研究进展[J].中国沙漠, 2007, 27(5):780-785.
[4] 张美玲, 蒋文兰, 陈全功, 等.草地净第一性生产力估算模型研究进展[J].草地学报, 2011, 19(2):356-366.
[5] 张智全, 黄高宝, 李广.陇东耕地净第一性生产力与生态服务价值分析[J].中国沙漠, 2011, 31(6):1516-1520.
[6] Monteith J.Solar radiation and productivity in tropical ecosystems[J].Journal of Applied Ecology, 1972, 9:747-766.
[7] Running S W, Nemani R R, Heinsch F A, et al. A continuous satellite-derived measure of global terrestrial primary production[J].BioScience, 2004, 54(6):547-560.
[8] Prieto-Blanco A, Peter R, North J, et al.Satellite-driven modeling of Net Primary Productivity (NPP):theoretical analysis[J].Remote Sensing of Environment, 2009, 113(1):137-147.
[9] Zhao M S, Running S W.Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J].Science, 2010, 329:940-943.
[10] Edirisinghe A, Hil M J, Donald G E, et al.Quantitative mapping of pasture biomass using satellite imagery[J].International Journal of Remote Sensing, 2011, 32(10):2699-2724.
[11] 陈福军, 沈彦俊, 李倩, 等.中国陆地生态系统近30年NPP时空变化研究[J].地理科学, 2011, 31(11):1409-1415.
[12] Maselli F, Argenti G, Chiesi M, et al.Simulation of grassland productivity by the combination of ground and satellite data[J].Agriculture Ecosystems & Environment, 2013, 165:163-172.
[13] 侯英雨, 毛留喜, 李朝生, 等.中国植被净初级生产力变化的时空格局[J].生态学杂志, 2008, 27(9):1455-1460.
[14] 李晓松, 李增元, 高志海, 等.基于NDVI与偏最小二乘回归的荒漠化地区植被覆盖度高光谱遥感估算[J].中国沙漠, 2011, 31(1):162-167.
[15] 李登科, 范建忠, 王娟.基于MOD17A3的陕西省植被NPP变化特征[J].生态学杂志, 2011, 30(12):2776-2782.
[16] 张镱锂, 祁威, 周才平, 等.青藏高原高寒草地净初级生产力(NPP)时空分异[J].地理学报, 2013, 68(9):1197-1211.
[17] Chavez F P, Messié M, Pennington J T.Marine primary production in relation to climate variability and change[J].Marine Science, 2011, 3:227-260.
[18] Thomey M L, Collins S L, Vargas R, et al.Effect of precipitation variability on net primary production and soil respiration in a Chihuahua Desert grassland[J].Global Change Biology, 2011, 17:1505-1515.
[19] Yang H F, Mu S J, Li J L.Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang[J].Catena, 2014, 115:85-95.
[20] Wu S H, Zhou S L, Chen D X, et al.Determining the contributions of urbanization and climate change to NPP variations over the last decade in the Yangtze River Delta, China[J].Science of The Total Environment, 2014, 472(15):397-406.
[21] 朱文泉, 潘耀忠, 阳小琼, 等.气候变化对中国陆地植被净初级生产力的影响分析[J].科学通报, 2007, 52(21):2535-2541.
[22] 赵东升, 吴绍洪, 尹云鹤.气候变化情景下中国自然植被净初级生产力分布[J].应用生态学报, 2011, 22(4):897-904.
[23] 蔡迪花, 王润元, 郭妮, 等.民勤春小麦NDVI与产量关系及其对气候变暖的响应[J].中国沙漠, 2010, 30(2):376-382.
[24] 蒋冲, 王文丽, 陈爱芳, 等.近52年渭河流域气候变化对植被净第一性生产力的影响[J].中国沙漠, 2013, 33(3):952-957.
[25] 李传华, 赵军.2000-2010年石羊河流域NPP时空变化及驱动因子[J].生态学杂志, 2013, 32(3):712-718.
[26] Huxman T E, Smith M D, Fay P A, et al.Convergence across biomes to a common rain-use efficiency[J].Nature, 2004, 429(6992):651-654.
[27] 何勇, 董文杰, 郭晓寅, 等.我国南水北调东线地区陆地NPP变化特征[J].气候变化研究进展, 2006, 2(5):246-249.
[28] 朱文泉, 高清竹, 段敏捷, 等.藏西北高寒草原生态资产价值评估[J].自然资源学报, 2011, 26(3):419-428.
[29] 周才平, 欧阳华, 王勤学, 等.青藏高原主要生态系统净初级生产力的估算[J].地理学报, 2004, 59(1):74-79.
[30] 裴志永, 周才平, 欧阳华, 等.青藏高原高寒草原区域碳估测[J].地理研究, 2010, 29(1):102-110.
[31] 李文华, 赵新全, 张宪洲, 等.青藏高原主要生态系统变化及其碳源/碳汇功能作用[J].自然杂志, 2013, 35(3):172-178.
[32] 高清竹, 万运帆, 李玉娥, 等.藏北高寒草地NPP变化趋势及其对人类活动的响应[J].生态学报, 2007, 27(11):4612-4620.
[33] 朴世龙, 方精云.1982-1999年青藏高原植被净第一性生产力及其时空变化[J].自然资源学报, 2002, 17(3):373-380.
[34] 杜军, 胡军, 周保琴, 等.西藏一江两河流域作物气候生产力对气候变化的响应[J].干旱地区农业研究, 2008, 26(1):141-146.
[35] 杨元合, 朴世龙.青藏高原草地植被覆盖变化及其与气候因子的关系[J].植物生态学报, 2006, 30(1):1-8.
[36] Heinsch F A, Reeves M, Votava P, et al.User's Guide GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm[DB/OL].http://www.ntsg.umt.edu/modis/MODI-UsersGuide.pdf
No Suggested Reading articles found!