Journal of Desert Research ›› 2024, Vol. 44 ›› Issue (2): 25-34.DOI: 10.7522/j.issn.1000-694X.2023.00088
Previous Articles Next Articles
Ziyi Bai(), Zhibao Dong(
), Weige Nan, Fengjun Xiao, Chao Li, Tianjie Shao, Lingling Kong, Xiaokang Liu, Aiming Liang, Zheng Chi
Received:
2023-05-19
Revised:
2023-06-19
Online:
2024-03-20
Published:
2024-03-19
Contact:
Zhibao Dong
CLC Number:
Ziyi Bai, Zhibao Dong, Weige Nan, Fengjun Xiao, Chao Li, Tianjie Shao, Lingling Kong, Xiaokang Liu, Aiming Liang, Zheng Chi. The influence of vegetation coverage on the wind sand flow structure and sediment transport rate[J]. Journal of Desert Research, 2024, 44(2): 25-34.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00088
分类 | 高度/ cm | 植被盖度10% | 植被盖度20% | 植被盖度30% | 植被盖度40% | ||||
---|---|---|---|---|---|---|---|---|---|
输沙量 /(g·cm-2·min-1) | 占比 /% | 输沙量 /(g·cm-2·min-1) | 占比 /% | 输沙量 /(g·cm-2·min-1) | 占比 /% | 输沙量 /(g·cm-2·min-1) | 占比 /% | ||
低层 | 2 | 0.409 | 8.87 | 0.060 | 5.10 | 0.002 | 2.69 | 0.002 | 3.67 |
4 | 0.587 | 12.74 | 0.0.70 | 5.93 | 0.002 | 2.86 | 0.002 | 4.26 | |
6 | 0.455 | 9.87 | 0.125 | 10.61 | 0.002 | 2.41 | 0.001 | 3.13 | |
8 | 0.394 | 8.55 | 0.112 | 9.56 | 0.002 | 2.77 | 0.001 | 1.83 | |
10 | 0.362 | 7.85 | 0.091 | 7.78 | 0.003 | 4.77 | 0.002 | 3.50 | |
中层 | 12 | 0.353 | 7.66 | 0.088 | 7.50 | 0.004 | 5.97 | 0.002 | 4.52 |
14 | 0.318 | 6.89 | 0.085 | 7.24 | 0.004 | 5.28 | 0.002 | 3.72 | |
16 | 0.289 | 6.28 | 0.074 | 6.31 | 0.005 | 6.97 | 0.003 | 5.69 | |
18 | 0.277 | 6.01 | 0.074 | 6.27 | 0.007 | 9.10 | 0.003 | 6.61 | |
20 | 0.255 | 5.54 | 0.071 | 6.06 | 0.006 | 8.49 | 0.004 | 8.17 | |
高层 | 22 | 0.245 | 5.32 | 0.068 | 5.81 | 0.007 | 9.55 | 0.004 | 7.87 |
24 | 0.229 | 4.97 | 0.068 | 5.75 | 0.008 | 11.39 | 0.004 | 8.17 | |
26 | 0.199 | 4.31 | 0.061 | 5.21 | 0.007 | 10.39 | 0.006 | 13.15 | |
28 | 0.147 | 3.18 | 0.061 | 5.17 | 0.006 | 8.71 | 0.006 | 12.71 | |
30 | 0.091 | 1.97 | 0.067 | 5.69 | 0.006 | 8.64 | 0.006 | 13.00 | |
合计 | 4.609 | 100 | 1.176 | 100 | 0.072 | 100 | 0.046 | 100 |
Table 1 Distribution of sand flow structure of Astragalus adsurgens under different vegetation coverage under layout of one line
分类 | 高度/ cm | 植被盖度10% | 植被盖度20% | 植被盖度30% | 植被盖度40% | ||||
---|---|---|---|---|---|---|---|---|---|
输沙量 /(g·cm-2·min-1) | 占比 /% | 输沙量 /(g·cm-2·min-1) | 占比 /% | 输沙量 /(g·cm-2·min-1) | 占比 /% | 输沙量 /(g·cm-2·min-1) | 占比 /% | ||
低层 | 2 | 0.409 | 8.87 | 0.060 | 5.10 | 0.002 | 2.69 | 0.002 | 3.67 |
4 | 0.587 | 12.74 | 0.0.70 | 5.93 | 0.002 | 2.86 | 0.002 | 4.26 | |
6 | 0.455 | 9.87 | 0.125 | 10.61 | 0.002 | 2.41 | 0.001 | 3.13 | |
8 | 0.394 | 8.55 | 0.112 | 9.56 | 0.002 | 2.77 | 0.001 | 1.83 | |
10 | 0.362 | 7.85 | 0.091 | 7.78 | 0.003 | 4.77 | 0.002 | 3.50 | |
中层 | 12 | 0.353 | 7.66 | 0.088 | 7.50 | 0.004 | 5.97 | 0.002 | 4.52 |
14 | 0.318 | 6.89 | 0.085 | 7.24 | 0.004 | 5.28 | 0.002 | 3.72 | |
16 | 0.289 | 6.28 | 0.074 | 6.31 | 0.005 | 6.97 | 0.003 | 5.69 | |
18 | 0.277 | 6.01 | 0.074 | 6.27 | 0.007 | 9.10 | 0.003 | 6.61 | |
20 | 0.255 | 5.54 | 0.071 | 6.06 | 0.006 | 8.49 | 0.004 | 8.17 | |
高层 | 22 | 0.245 | 5.32 | 0.068 | 5.81 | 0.007 | 9.55 | 0.004 | 7.87 |
24 | 0.229 | 4.97 | 0.068 | 5.75 | 0.008 | 11.39 | 0.004 | 8.17 | |
26 | 0.199 | 4.31 | 0.061 | 5.21 | 0.007 | 10.39 | 0.006 | 13.15 | |
28 | 0.147 | 3.18 | 0.061 | 5.17 | 0.006 | 8.71 | 0.006 | 12.71 | |
30 | 0.091 | 1.97 | 0.067 | 5.69 | 0.006 | 8.64 | 0.006 | 13.00 | |
合计 | 4.609 | 100 | 1.176 | 100 | 0.072 | 100 | 0.046 | 100 |
植被盖度 /% | 植被布局 | ||
---|---|---|---|
一行一带 | 两行一带 | 交叉布局 | |
10 | 55.31 | 12.60 | 13.43 |
20 | 14.11 | 3.60 | 2.03 |
30 | 0.86 | 1.64 | 1.76 |
40 | 0.55 | 0.97 | 0.46 |
Table 2 Sediment transport rates under different vegetation coverage under three layouts (kg·m-1 ·h-1 )
植被盖度 /% | 植被布局 | ||
---|---|---|---|
一行一带 | 两行一带 | 交叉布局 | |
10 | 55.31 | 12.60 | 13.43 |
20 | 14.11 | 3.60 | 2.03 |
30 | 0.86 | 1.64 | 1.76 |
40 | 0.55 | 0.97 | 0.46 |
植被盖度 /% | 植被布局 | ||
---|---|---|---|
一行一带 | 两行一带 | 交叉布局 | |
10 | 17.55 | 72.44 | 72.83 |
20 | 59.60 | 89.33 | 92.84 |
30 | 97.31 | 92.71 | 94.54 |
40 | 98.55 | 96.55 | 98.34 |
Table 3 Wind erosion inhibition efficiency of different vegetation coverage (%)
植被盖度 /% | 植被布局 | ||
---|---|---|---|
一行一带 | 两行一带 | 交叉布局 | |
10 | 17.55 | 72.44 | 72.83 |
20 | 59.60 | 89.33 | 92.84 |
30 | 97.31 | 92.71 | 94.54 |
40 | 98.55 | 96.55 | 98.34 |
植被布局 | 植被盖度/% | 高度/cm | 拟合函数 | b | a | z | z0/cm | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 10 | 20 | 30 | |||||||
一行一带 | 10 | 2.87 | 5.36 | 6.67 | 8.57 | 10.31 | y=3.2437x+14.046 | 3.24 | 14.05 | 1.2564 | 1.32 |
20 | 4.83 | 5.46 | 5.81 | 7.23 | 10.07 | y=3.678x+13.975 | 3.68 | 13.98 | 2.1779 | 2.24 | |
30 | 1.11 | 2.11 | 3.48 | 7.10 | 10.09 | y=5.9326x+17.009 | 5.93 | 17.01 | 5.6267 | 5.69 | |
40 | 0.84 | 0.86 | 2.59 | 6.71 | 9.78 | y=6.4724x+17.397 | 6.47 | 17.40 | 6.7425 | 6.80 | |
两行一带 | 10 | 5.24 | 6.10 | 6.74 | 7.82 | 9.54 | y=2.4401x+12.195 | 2.44 | 12.20 | 0.6153 | 0.68 |
20 | 1.13 | 1.61 | 3.19 | 6.60 | 9.50 | y=6.63x+17.35 | 6.63 | 17.35 | 5.7722 | 5.83 | |
30 | 1.20 | 1.48 | 2.19 | 6.39 | 9.55 | y=5.6588x+16.081 | 5.66 | 16.08 | 7.2429 | 7.30 | |
40 | 0.54 | 0.71 | 1.40 | 6.02 | 9.54 | y=7.3276x+18.15 | 7.33 | 18.15 | 8.3400 | 8.40 | |
交叉布局 | 10 | 5.22 | 6.01 | 6.70 | 7.76 | 9.46 | y=2.411x+12.083 | 2.41 | 12.08 | 0.6060 | 0.67 |
20 | 2.82 | 3.60 | 4.72 | 7.43 | 10.27 | y=4.9216x+15.867 | 4.92 | 15.87 | 3.9197 | 3.98 | |
30 | 1.52 | 2.23 | 3.14 | 6.75 | 10.06 | y=6.1828x+17.192 | 6.18 | 17.19 | 6.1400 | 6.20 | |
40 | 1.70 | 1.28 | 2.10 | 5.79 | 9.63 | y=6.6864x+17.244 | 6.69 | 17.24 | 7.5252 | 7.59 |
Table 4 Aerodynamic roughness under different vegetation coverage under three layouts
植被布局 | 植被盖度/% | 高度/cm | 拟合函数 | b | a | z | z0/cm | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 10 | 20 | 30 | |||||||
一行一带 | 10 | 2.87 | 5.36 | 6.67 | 8.57 | 10.31 | y=3.2437x+14.046 | 3.24 | 14.05 | 1.2564 | 1.32 |
20 | 4.83 | 5.46 | 5.81 | 7.23 | 10.07 | y=3.678x+13.975 | 3.68 | 13.98 | 2.1779 | 2.24 | |
30 | 1.11 | 2.11 | 3.48 | 7.10 | 10.09 | y=5.9326x+17.009 | 5.93 | 17.01 | 5.6267 | 5.69 | |
40 | 0.84 | 0.86 | 2.59 | 6.71 | 9.78 | y=6.4724x+17.397 | 6.47 | 17.40 | 6.7425 | 6.80 | |
两行一带 | 10 | 5.24 | 6.10 | 6.74 | 7.82 | 9.54 | y=2.4401x+12.195 | 2.44 | 12.20 | 0.6153 | 0.68 |
20 | 1.13 | 1.61 | 3.19 | 6.60 | 9.50 | y=6.63x+17.35 | 6.63 | 17.35 | 5.7722 | 5.83 | |
30 | 1.20 | 1.48 | 2.19 | 6.39 | 9.55 | y=5.6588x+16.081 | 5.66 | 16.08 | 7.2429 | 7.30 | |
40 | 0.54 | 0.71 | 1.40 | 6.02 | 9.54 | y=7.3276x+18.15 | 7.33 | 18.15 | 8.3400 | 8.40 | |
交叉布局 | 10 | 5.22 | 6.01 | 6.70 | 7.76 | 9.46 | y=2.411x+12.083 | 2.41 | 12.08 | 0.6060 | 0.67 |
20 | 2.82 | 3.60 | 4.72 | 7.43 | 10.27 | y=4.9216x+15.867 | 4.92 | 15.87 | 3.9197 | 3.98 | |
30 | 1.52 | 2.23 | 3.14 | 6.75 | 10.06 | y=6.1828x+17.192 | 6.18 | 17.19 | 6.1400 | 6.20 | |
40 | 1.70 | 1.28 | 2.10 | 5.79 | 9.63 | y=6.6864x+17.244 | 6.69 | 17.24 | 7.5252 | 7.59 |
1 | Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].London,UK:Methuen,1941:170-172. |
2 | Dong Z B, Lv P, Zhang Z C,et al.Aeolian transport in the field:a comparison of the effects of different surface treatments[J].Journal of Geophysical Research,2012,117:D09210. |
3 | Dong Z B, Gao S, Fryrear D W.Drag coefficients,roughness length and zero-plane displacement height as disturbed by artificial standing vegetation[J].Journal of Arid Environment,2001,49:485-505. |
4 | Burri K, Gromke C, Lehning M,et al.Aeolian sediment transport over vegetation canopies:a wind tunnel study with live plants[J].Aeolian Research,2011,3(2):205-213. |
5 | Leenders J K, Boxel J H V, Sterk G.The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina Faso[J].Earth Surface Processes and Landforms,2007,32(10):1454-1474. |
6 | Abulaiti A, Kimura R,KodamaY.Effect of flexible and rigid roughness elements on aeolian sand transport [J].Arid Land Research and Management,2017,31:111-124. |
7 | Liu J Q, Kimura R J, Miyawaki M,et al.Effects of plants with different shapes and coverage on the blown-sand flux and roughness length examined by wind tunnel experiments[J].Catena,2021,197:104976. |
8 | Miri A, Dragovich D, Dong Z B.Vegetation morphologic and aerodynamic characteristics reduce aeolian erosion[J].Scientifc Reports,2017,7(1):12831. |
9 | Miri A, Dragovich D, Dong Z B.The response of live plants to airflow:implication for reducing erosion[J].Aeolian Research,2018,33:93-105. |
10 | Miri A, Dragovich D, Dong Z B.Wind-borne sand mass flux in vegetated surfaces:wind tunnel experiments with live plants[J].Catena,2019,172:421-434. |
11 | Kinugasa T, Sagayama T, Gantsetseg B,et al.Effect of simulated grazing on sediment trapping by single plants:a wind-tunnel experiment with two grassland species in Mongolia[J].Catena,2021,202:105262. |
12 | Suter-Burri K, Gromke C, C.Leonard Katherine,et al.Spatial patterns of aeolian sediment deposition in vegetation canopies:observations from wind tunnel experiments using colored sand[J].Aeolian Research,2013,8:65-73. |
13 | Bhutto S L, Miri A, Zhang Y,et al.Experimental study on the effect of four single shrubs on aeolian erosion in a wind tunnel[J].Catena,2022,212:106097. |
14 | Dong Z B, Liu X P, Wang X M.Aerodynamic roughness of gravel surfaces[J].Geomorphology,2002,43:17-31. |
15 | Dong Z B, Liu X P, Wang H T,et al.Aeolian sand transport:a wind tunnel model[J].Sedimentary Geology,2003,161:71-83. |
16 | 董治宝,陈渭南,董光荣,等.植被对风沙土风蚀作用的影响[J].环境科学学报,1996(4):437-443. |
17 | 邢恩德,马少薇,郭建英,等.植被盖度对典型草原区地表风沙流结构及风蚀量影响[J].水土保持研究,2015,22(6):331-334. |
18 | 余沛东,陈银萍,李玉强,等.植被盖度对沙丘风沙流结构及风蚀量的影响[J].中国沙漠,2019,39(5):29-36. |
19 | Zhang J M, Yu X X, Jia G D,et al.Determination of optimum vegetation type and layout for soil wind erosion control in desertified land in North China[J].Ecological Engineering,2021,171:106383. |
20 | 朱震达.中国沙漠、沙漠化、荒漠化及其治理的对策[M].北京:中国环境科学出版社,1999:108-136. |
21 | 吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003:61-69. |
22 | Dong Z B, Luo W Y, Qian G Q,et al.Wind tunnel simulation of the three-dimensional airflow patterns around shrubs[J].Journal of Geophysical Research,2008,113:F02016. |
23 | 拓宇.可移动式土壤风蚀风洞的设计与应用[D].西安:陕西师范大学,2021. |
24 | 李立国,赵政才.中华人民共和国政区大典·陕西省卷(下)[M].北京:中国社会出版社,2016:1767-1768. |
25 | 李超.土壤根系含量对风蚀影响的风洞模拟研究[D].西安:陕西师范大学,2016. |
26 | 李刚,韩杰,王帆.风洞变频调速系统对热线风速仪的影响及解决方法研究[J].测控技术,2022,41(11):78-83. |
27 | MacDonald R W, Griffiths R F, Hall D J.An improved method for the estimation of surface roughness of obstacle arrays[J].Atmospheric Environment,1998,32:1857-1864. |
28 | Meng Z J, Dang X H, Gao Y,et al.Wang,M.Interactive effects of wind speed,vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe,Inner Mongolia of China[J].Journal of Arid Land,2018,10:534-547. |
29 | 杨文斌,杨红艳,卢琦,等.低覆盖度灌木群丛的水平配置格局与固沙效果的风洞试验[J].生态学报,2008,38(7):2998-3007. |
30 | 徐高兴,徐先英,王立,等.梭梭不同密度与配置固沙效果风洞模拟试验[J].干旱区资源与环境,2019,33(9):189-195. |
[1] | Danyi Liu, Wei Feng, Tao Wang, Wenbin Yang, Bin Zhu, Hui Zou, Mi Zhou. Characteristics of vegetation restoration based on the theory of low vegetation coverage for desertification control [J]. Journal of Desert Research, 2024, 44(1): 170-177. |
[2] | Lingling Kong, Zhibao Dong, Ziyi Bai, Fengjun Xiao, Huirong Ma, Ruicong Xu. Effects of vegetation cover and configuration on soil wind erosion based on wind tunnel experiments [J]. Journal of Desert Research, 2024, 44(1): 235-243. |
[3] | Zhulei Dong, Xuegong Jiang, Nana Yi, Zhili Xu, Yuehe Hang, Shuiyan Yu. Numerical simulation of the influence of wind speed and vegetation on dust weather in Inner Mongolia, China [J]. Journal of Desert Research, 2023, 43(6): 29-39. |
[4] | Ting Liu, Xiaopeng Jia, Dingmei Chen, Lamu Yixi, Yan Zhang, Kaijia Pan, Zhengcai Zhang. Surface aerodynamic characteristics of flat quicksand in the middle reaches of Yarlung Tsangpo River [J]. Journal of Desert Research, 2023, 43(5): 194-203. |
[5] | Xiaohong Ma, Fei Lin, Liming Yuan, Junjie Niu. Vegetation coverage change and its response to ecological protection project in Fenhe River Basin [J]. Journal of Desert Research, 2023, 43(3): 86-95. |
[6] | Fanrui Bu, Ying Liu, Xueyong Zou. Response of vegetation coverage to precipitation change in the typical sandy lands of eastern China [J]. Journal of Desert Research, 2023, 43(3): 9-20. |
[7] | Xuying Bai, Yujie Wang, Yunqi Wang, Wenbin Yang, Tao Wang, Yiben Cheng. Changes and driving factors of water body area in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(2): 65-73. |
[8] | Jiawang Yin, Ala Musa, Yuhang Su. Effects of dune vegetation on water dynamics in interdune lowland in the Horqin Sandy Land [J]. Journal of Desert Research, 2022, 42(6): 194-203. |
[9] | Zhenliang Yin, Qi Feng, Lingge Wang, Zexia Chen, Yabin Chang, Rui Zhu. Vegetation coverage change and its influencing factors across the northwest region of China during 2000-2019 [J]. Journal of Desert Research, 2022, 42(4): 11-21. |
[10] | Yanhui Lei, Guodong Ding, Zimeng Li, Wenfeng Chi, Guanglei Gao, Yuanyuan Zhao. Land use/cover change and its ecosystem service value response in the Beijing-Tianjin sandstorm source control project area [J]. Journal of Desert Research, 2021, 41(6): 29-40. |
[11] | Yiran Zhang, Tingxi Liu, Xin Tong, Limin Duan, Xin Wang. Extraction and influencing factors of vegetation coverage using unmanned aerial vehicle images in dune-meadow transitional area [J]. Journal of Desert Research, 2021, 41(3): 16-24. |
[12] | Wenbing Yang, Tao Wang, Wei Xiong, Hui Zou, Wei Feng, Yiben Cheng, Honglin Lian. Overview of hydrological principle of low vegetation coverage sand control [J]. Journal of Desert Research, 2021, 41(3): 75-80. |
[13] | Xuyang Wang, Yulin Li, Jie Lian, Yulong Duan, Lilong Wang. Relationship between vegetation coverage and climate change in semi-arid sandy land and the significance to ecological construction [J]. Journal of Desert Research, 2021, 41(1): 183-194. |
[14] | Yongxiang Cao, Donglei Mao, Fuyan Cai, Xuemei Wang, Abulaiti Kaimaierguli, Songling Su. Spatial difference of microclimate over typical underlying surface in process of oasisization in Cele, Xinjiang [J]. Journal of Desert Research, 2020, 40(6): 180-189. |
[15] | Fanmin Mei, Shan Wang, Lixuan Tang, Jin Su. An improved scheme for modeling wind friction threshold velocity dependent on the aspect ratio of individual element and aerodynamic roughness length [J]. Journal of Desert Research, 2020, 40(6): 98-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech