Journal of Desert Research ›› 2023, Vol. 43 ›› Issue (5): 166-175.DOI: 10.7522/j.issn.1000-694X.2023.00098
Yuwei Li1(), Bo Wang1(
), Yuhai Bao1, Yanlong Han2, Maolin Yan3, Weifeng Wang3
Received:
2023-05-09
Revised:
2023-06-13
Online:
2023-09-20
Published:
2023-09-27
Contact:
Bo Wang
CLC Number:
Yuwei Li, Bo Wang, Yuhai Bao, Yanlong Han, Maolin Yan, Weifeng Wang. Effects of the development of grassland blowouts on soil ecological stoichiometry[J]. Journal of Desert Research, 2023, 43(5): 166-175.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00098
样地类型 | 地表状况 | 植物群落优势种 | 草本密度 /(株·m-2) | 植被盖度 /% |
---|---|---|---|---|
天然草原 | 地表基本无损伤 | 克氏针茅(Stipa krylovii)、羊草(Leymus chinensis)、 蒙古韭(Allium mongolicum) | 311±58a | 86.2±24.5a |
风蚀裸地 | 土层破口形成及地下散沙出露 | 羊草、狗尾草(Setaria viridis)、蒙古韭 | 38±21c | 19.4±7.8c |
活跃风蚀坑 | 土层崩解掏蚀形成风蚀坑 | 角蒿(Incarvillea sinensis)、猪毛菜(Salsola collina)、沙米(Agriophyllum squarrosum) | 14±6d | 8.7±2.3d |
消亡风蚀坑 | 表土层恢复,但总体较原表层土壤厚度小、细粒成分降低、粗粒成分增加 | 差巴嘎蒿(Artemisia halodendron)、短花针茅(Stipa breviflora)、大籽蒿(Artemisia sieversiana)、猪毛蒿(Artemisia scoparia) | 174±33b | 52.3±16.6b |
Table 1 Conditions of different sample types
样地类型 | 地表状况 | 植物群落优势种 | 草本密度 /(株·m-2) | 植被盖度 /% |
---|---|---|---|---|
天然草原 | 地表基本无损伤 | 克氏针茅(Stipa krylovii)、羊草(Leymus chinensis)、 蒙古韭(Allium mongolicum) | 311±58a | 86.2±24.5a |
风蚀裸地 | 土层破口形成及地下散沙出露 | 羊草、狗尾草(Setaria viridis)、蒙古韭 | 38±21c | 19.4±7.8c |
活跃风蚀坑 | 土层崩解掏蚀形成风蚀坑 | 角蒿(Incarvillea sinensis)、猪毛菜(Salsola collina)、沙米(Agriophyllum squarrosum) | 14±6d | 8.7±2.3d |
消亡风蚀坑 | 表土层恢复,但总体较原表层土壤厚度小、细粒成分降低、粗粒成分增加 | 差巴嘎蒿(Artemisia halodendron)、短花针茅(Stipa breviflora)、大籽蒿(Artemisia sieversiana)、猪毛蒿(Artemisia scoparia) | 174±33b | 52.3±16.6b |
指标 | 样地类型 | 土层 | 总量 | |||
---|---|---|---|---|---|---|
0~20 cm | 20~40 cm | 40~60 cm | 60~80 cm | |||
碳储量 /(t·hm-2) | 天然草原 | 71.0±7.2a | 62.7±4.8a | 59.1±3.9a | 54.3±3.6a | 247.1±15.9a |
风蚀裸地 | 63.9±10.2b | 62.2±8.9a | 50.4±14.7ab | 47.7±8.3ab | 224.1±34.2ab | |
活跃风蚀坑 | 30.6±16.3c | 30.1±15.5c | 28.3±10.8c | 24.3±9.6c | 113.4±50.8c | |
消亡风蚀坑 | 55.9±13.9b | 54.8±7.6b | 48.9±11.4b | 44.2±12.5b | 203.8±13.0b | |
氮储量 /(t·hm-2) | 天然草原 | 6.1±3.0b | 7.2±2.3b | 5.4±1.3a | 5.3±2.0a | 24.1±4.3a |
风蚀裸地 | 7.1±3.6a | 7.3±1.7b | 5.5±1.3a | 4.9±0.9a | 24.7±7.5a | |
活跃风蚀坑 | 5.0±2.0c | 8.1±4.6a | 5.3±3.4a | 4.2±3.0b | 22.7±12.0b | |
消亡风蚀坑 | 6.4±1.2b | 6.9±3.3b | 5.2±0.7a | 4.2±1.6b | 22.6±1.2b | |
磷储量 /(t·hm-2) | 天然草原 | 1.90±0.67b | 1.39±0.39d | 1.70±0.58a | 1.24±0.30a | 6.24±1.95b |
风蚀裸地 | 1.74±0.14b | 1.55±0.41c | 1.38±0.22b | 1.22±0.21a | 5.90±0.93c | |
活跃风蚀坑 | 1.31±0.15c | 1.75±0.80b | 1.43±0.23b | 1.15±0.14a | 5.65±1.29d | |
消亡风蚀坑 | 2.18±0.48a | 1.86±0.77a | 1.43±0.21b | 1.07±0.19a | 6.54±1.21a |
Table 2 Changes of soil C, N, P storage during the development of blowouts in steppe
指标 | 样地类型 | 土层 | 总量 | |||
---|---|---|---|---|---|---|
0~20 cm | 20~40 cm | 40~60 cm | 60~80 cm | |||
碳储量 /(t·hm-2) | 天然草原 | 71.0±7.2a | 62.7±4.8a | 59.1±3.9a | 54.3±3.6a | 247.1±15.9a |
风蚀裸地 | 63.9±10.2b | 62.2±8.9a | 50.4±14.7ab | 47.7±8.3ab | 224.1±34.2ab | |
活跃风蚀坑 | 30.6±16.3c | 30.1±15.5c | 28.3±10.8c | 24.3±9.6c | 113.4±50.8c | |
消亡风蚀坑 | 55.9±13.9b | 54.8±7.6b | 48.9±11.4b | 44.2±12.5b | 203.8±13.0b | |
氮储量 /(t·hm-2) | 天然草原 | 6.1±3.0b | 7.2±2.3b | 5.4±1.3a | 5.3±2.0a | 24.1±4.3a |
风蚀裸地 | 7.1±3.6a | 7.3±1.7b | 5.5±1.3a | 4.9±0.9a | 24.7±7.5a | |
活跃风蚀坑 | 5.0±2.0c | 8.1±4.6a | 5.3±3.4a | 4.2±3.0b | 22.7±12.0b | |
消亡风蚀坑 | 6.4±1.2b | 6.9±3.3b | 5.2±0.7a | 4.2±1.6b | 22.6±1.2b | |
磷储量 /(t·hm-2) | 天然草原 | 1.90±0.67b | 1.39±0.39d | 1.70±0.58a | 1.24±0.30a | 6.24±1.95b |
风蚀裸地 | 1.74±0.14b | 1.55±0.41c | 1.38±0.22b | 1.22±0.21a | 5.90±0.93c | |
活跃风蚀坑 | 1.31±0.15c | 1.75±0.80b | 1.43±0.23b | 1.15±0.14a | 5.65±1.29d | |
消亡风蚀坑 | 2.18±0.48a | 1.86±0.77a | 1.43±0.21b | 1.07±0.19a | 6.54±1.21a |
差异源 | SOC | TN | TP | C/N | C/P | N/P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | 偏η2 | P | 偏η2 | P | 偏η2 | P | 偏η2 | P | 偏η2 | P | 偏η2 | |
风蚀坑发育 | <0.001 | 0.781 | 0.43 | 0.08 | 0.589 | 0.05 | 0.04 | 0.36 | <0.001 | 0.59 | 0.790 | 0.03 |
土层深度 | 0.004 | 0.340 | 0.03 | 0.23 | 0.005 | 0.33 | 0.647 | 0.05 | 0.726 | 0.04 | 0.498 | 0.07 |
风蚀坑发育×土层深度 | 0.833 | 0.132 | 0.99 | 0.02 | 0.582 | 0.19 | 0.987 | 0.06 | 0.737 | 0.15 | 0.942 | 0.09 |
Table 3 Effects of the development of blowouts, soil depth variation and their interaction on soil C, N, P properties
差异源 | SOC | TN | TP | C/N | C/P | N/P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | 偏η2 | P | 偏η2 | P | 偏η2 | P | 偏η2 | P | 偏η2 | P | 偏η2 | |
风蚀坑发育 | <0.001 | 0.781 | 0.43 | 0.08 | 0.589 | 0.05 | 0.04 | 0.36 | <0.001 | 0.59 | 0.790 | 0.03 |
土层深度 | 0.004 | 0.340 | 0.03 | 0.23 | 0.005 | 0.33 | 0.647 | 0.05 | 0.726 | 0.04 | 0.498 | 0.07 |
风蚀坑发育×土层深度 | 0.833 | 0.132 | 0.99 | 0.02 | 0.582 | 0.19 | 0.987 | 0.06 | 0.737 | 0.15 | 0.942 | 0.09 |
1 | Zhou L, Wei X, Wang C T,et al.Differences in soil microarthropod community structure in alpine grasslands with differing degrees of degradation[J].Acta Prataculturae Sinica,2022,31(3):34-46. |
2 | 张德平,王效科,哈斯,等.呼伦贝尔沙质草原风蚀坑研究(1):形态、分类、研究意义[J].中国沙漠,2006,26(6):894-902. |
3 | 闫德仁.浑善达克沙地风蚀坑形态特征及其影响因素[J].地理科学,2016,36(4):637-642. |
4 | 胡日娜,哈斯额尔敦,浩毕斯哈拉图,等.浑善达克沙地东南缘固定沙丘风蚀坑动态变化[J].中国沙漠,2019,39(1):34-43. |
5 | Kimia C A, Ian J W, Patrick A H,et al.Spatial-temporal evolution of aeolian blowout dunes at Cape Cod[J].Geomorphology,2015,236:148-162. |
6 | Smyth T, Jackson D, Cooper A.Three dimensional airflow patterns within a coastal trough-bowl blowout during fresh breeze to hurricane force winds[J].Aeolian Research,2013,10(142):171. |
7 | Zeng Q C, Liu Y, Fang Y,et al.Impact of vegetation restoration on plants and soil C∶N∶P stoichiometry on the Yunwu Mountain Reserve of China[J].Ecological Engineering,2017,109:92-100. |
8 | 赵天赐,安婵,李金升,等.不同退化程度草地土壤碳、氮对人工湖的时空响应[J].草业科学,2019,36(1):61-68. |
9 | 贺佩,李悦,江明兢,等.连续氮添加14年对温带典型草原土壤碳氮组分及物理结构的影响[J].生态学报,2021,41(5):1808-1823. |
10 | 陈云,李玉强,王旭洋,等.中国典型生态脆弱区生态化学计量学研究进展[J].生态学报,2021,41(10):4213-4225. |
11 | 宁志英,李玉霖,杨红玲,等.沙化草地土壤碳氮磷化学计量特征及其对植被生产力和多样性的影响[J].生态学报,2019,39(10):3537-3546. |
12 | 其曼古丽·帕拉提,刘丹,毛军,等.不同退化程度高寒草地土壤碳氮磷含量及其生态化学计量特征[J].生态学杂志,2023:1-11. |
13 | 段成伟,李希来,柴瑜,等.人工修复下退化高寒草甸碳、氮、磷生态化学计量特征[J].中国草地学报,2022,44(7):23-32. |
14 | 张德平,孙宏伟,王效科,等.呼伦贝尔沙质草原风蚀坑研究(Ⅱ):发育过程[J].中国沙漠,2007,27(1):20-24. |
15 | Smith A, Gares P A, Wasklewicz T,et al.Three years of morphologic changes at a bowl blowout,Cape Cod,USA[J].Geomorphology,2017,295(15):452-466. |
16 | Deng L, Shangguan Z P.Effects of grazing exclusion on carbon sequestration in China's grassland[J].Earth-Science Reviews,2017,173:84-95. |
17 | 张德平,王效科,胡日乐,等.呼伦贝尔沙质草原风蚀坑研究(Ⅲ):微地貌和土层的影响[J].中国沙漠,2007,27(1):25-31. |
18 | Grout H, Tarquis A M, Wiesner M R.Multifractal analysis of particle size distributions in soil[J].Environmental Science & Technology,1998,32(9):1176-1182. |
19 | 袁立敏,杨制国,薛博,等.呼伦贝尔草原风蚀坑土壤水分异质效应研究[J].干旱区研究,2022,39(5):1598-1606. |
20 | Wang Z Q, Zhang Y Z, Yang Y,et al.Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, in China[J].Ecological Informatics,2016,33:32-44. |
21 | 王博,段玉玺,王伟峰,等.油蒿灌丛群落浅层土壤水分对不同降雨格局的响应[J].应用生态学报,2020,31(5):1571-1578. |
22 | 李雪萍,许世洋,李敏权,等.甘南州不同退化程度高寒草甸植被及土壤特性的演化规律[J].生态学报,2022,42(18):7541-7552. |
23 | 罗旦,陈吉祥,程琳,等.陕北沙化区3种主要植物根际土壤细菌多样性与土壤理化性质相关性分析[J].干旱区资源与环境,2019,33(3):151-157. |
24 | Phillips R P, Bernhardt E S, Schlesinger W H.Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response[J].Tree Physiology,2009,29:1513-1523. |
25 | 赵芳草,陈鸿飞,王一昊,等.盐渍化草地根际土壤理化性质对降水改变和氮添加的响应[J].草地学报,2022,30(9):2430-2437. |
26 | Dubrovina I A, Moshkina E V, Sidorova V A,et al.The impact of land use on soil properties and structure of ecosystem carbon stocks in the middle Taiga Subzone of Karelia[J].Eurasian Soil Science,2021,11:1756-1769. |
27 | 李玉强,赵哈林,赵学勇,等.科尔沁沙地沙漠化过程中土壤碳氮特征分析[J].水土保持学报,2005,19(5):75-78. |
28 | 朱灵,李易,杨婉秋,等.沙化对高寒草地土壤碳、氮、酶活性及细菌多样性的影响[J].水土保持学报,2021,35(3):350-358. |
29 | 李玉强,赵哈林,移小勇,等.沙漠化过程中科尔沁沙地植物-土壤系统碳氮储量动态[J].环境科学,2006,27(4):635-640. |
30 | Wang B, Li Y W, Bao Y H.Grazing alters sandy soil greenhouse gas emissions in a sand-binding area of the Hobq Desert, China[J].Journal of Arid Land,2022,14(5):576-588. |
31 | 曹成有,朱丽辉,蒋德明,等.科尔沁沙地不同人工植物群落对土壤养分和生物活性的影响[J].水土保持学报,2007,21(1):168-171. |
32 | Feng Q, Endo K N, Cheng G D.Soil carbon in desertified land in relation to site characteristics[J].Geoderma,2002,106(1/2):21-43. |
33 | Tian H, Chen G, Chi Z,et al.Pattern and variation of C∶N∶P ratios in China's soils: a synthesis of observational data[J].Biogeochemistry,2010,98(s1-3):139-151. |
34 | Ma R, Hu F, Liu J,et al.Shifts in soil nutrient concentrations and C∶N∶P stoichiometry during long-term natural vegetation restoration[J].Peer J,2020,8(1):e8382. |
35 | 张富荣,柳洋,史常明,等.不同恢复年限刺槐林土壤碳、氮、磷含量及其生态化学计量特征[J].生态环境学报,2021,30(3):485-491. |
36 | 孙小东,宁志英,杨红玲,等.中国北方典型风沙区土壤碳氮磷化学计量特征[J].中国沙漠,2018,38(6):1209-1218. |
[1] | Haixuan Tao, Chunxiu Guo, Junmei Ma, Zhongwen Wang, Heran Zhao, Dacheng Song, Fanglan He. Influences of soil crust development on soil seed bank of herbaceous plants in arid desert area [J]. Journal of Desert Research, 2023, 43(4): 89-97. |
[2] | Yadong Jiang, Shijie Lv, Hongmei Liu, Narenhua, Xinyu Liu. Analysis of quantitative characteristics and spatial distribution for main shrubs on the eastern edge of the Badain Jaran Desert [J]. Journal of Desert Research, 2023, 43(3): 295-304. |
[3] | Xiangjie Li, Zhiwen Li, Dingding Du, Li Sun, Chu Hou, Shiqian Li, Wen Zhang. Sediments and spatial pattern characteristics of Vitex trifolia nebkhas in the Houtian sandy land of Nanchang, China [J]. Journal of Desert Research, 2022, 42(6): 211-220. |
[4] | Heng Ren, Wenzhi Zhao, Zhitao Wang, Jiang Zhao. Spatial pattern of Psammochloa villosa population in patch landscape in dune habitat [J]. Journal of Desert Research, 2022, 42(4): 89-98. |
[5] | Lei Kang, Zhaoping Yang, Fang Han. Analysis of structural characteristics and spatial distribution of the intangible cultural heritage in Xinjiang and its influencing factor [J]. Journal of Desert Research, 2022, 42(1): 158-166. |
[6] | Longqiang Zhu, Xiaoyun Wang, Jiamin Liu, Yaowen Xie. Distribution and natural environment background of sites in Hexi region,Gansu,China [J]. Journal of Desert Research, 2021, 41(4): 121-128. |
[7] | Jun Liu, Zhongling Guo, Chunping Chang, Rende Wang, Jifeng Li, Qing Li, Xuyang Wang. Potential wind erosion simulation in the agro-pastoral ecotone of northern China using RWEQ and WEPS models [J]. Journal of Desert Research, 2021, 41(2): 27-37. |
[8] | Zheting Jia, Jiuyan Yang, Yanxia Sun, Qi Chen, Ruiling Yan. Spatial distribution pattern of Salsola passerina population in Alashan Plateau [J]. Journal of Desert Research, 2021, 41(1): 119-128. |
[9] | Fang Liu, Guangchao Cao, Shengkui Cao, Yufan Yang. Research on stable isotope characteristics and recharge relationship of the main river on the southern slope of Qilian Mountains [J]. Journal of Desert Research, 2020, 40(6): 151-161. |
[10] | Mengyu Hao, Longjun Qin, Peng Mao, Jiechunyi Luo, Wenli Zhao, Guoyu Qiu. Unmanned aerial vehicle (UAV) based methodology for spatial distribution pattern analysis of desert vegetation [J]. Journal of Desert Research, 2020, 40(6): 169-179. |
[11] | Sun Yanxia, Yang Jiuyan, Qiao Yiqing, Guo Chaoli, Shao Yiming, Wang Jianyu. Spatial distribution pattern of Reaumuria songarica population in Alashan Plateau [J]. Journal of Desert Research, 2020, 40(1): 105-115. |
[12] | Luo Haiyan, Lai Fengbing, Chen Yujiang, Zhu Xuan. Morphological Characteristics and Spatial Distribution of Root Canal Gravel in Belikom Desert, Taklimakan [J]. Journal of Desert Research, 2019, 39(6): 200-208. |
[13] | Yang Yufan, Cao Shengkui, Feng Qi, Cao Guangchao, Liu Ying, Lei Yizhen. Spatial Distribution Characteristics of Composition of Stable Hydrogen and Oxygen Isotopes of Shallow Groundwater in Shaliu River Basin of Qinghai Lake [J]. Journal of Desert Research, 2019, 39(5): 45-53. |
[14] | Lv Xingyu, Zhang Zhishan. Recovery of Soil Microbe Quantities Dependent on Fine Particle Contents after Establishment of Sand-fixing Revegetation in Desert Region [J]. Journal of Desert Research, 2019, 39(5): 71-79. |
[15] | Zhang Mengxu, Liu Wei, Zhu Meng, Li Ruolin. Soil Organic Carbon Storage and Distribution Patterns in the Mountainous Areas of the Hexi Region, Gansu, China [J]. Journal of Desert Research, 2019, 39(4): 64-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech