Journal of Desert Research ›› 2024, Vol. 44 ›› Issue (2): 57-65.DOI: 10.7522/j.issn.1000-694X.2023.00104
Previous Articles Next Articles
Jiahui Cao(), Siyu Chen(
), Chao Zhang, Lulu Lian, Dan Zhao, Shikang Du
Received:
2023-06-16
Revised:
2023-07-13
Online:
2024-03-20
Published:
2024-03-19
Contact:
Siyu Chen
CLC Number:
Jiahui Cao, Siyu Chen, Chao Zhang, Lulu Lian, Dan Zhao, Shikang Du. External contribution of the Tibetan Plateau dust[J]. Journal of Desert Research, 2024, 44(2): 57-65.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00104
物理化学过程 | 设置 |
---|---|
微物理方案 | Morrison two-moment scheme |
长波辐射方案 | RRTMG |
短波辐射方案 | RRTMG |
陆面方案 | Noah land-surface model |
积云参数化方案 | Grell 3D |
沙尘排放方案 | GOCART |
气溶胶方案 | MOSAIC-4Bin |
Table 1 WRF-Chem configuration options for physical and chemical parameterizations
物理化学过程 | 设置 |
---|---|
微物理方案 | Morrison two-moment scheme |
长波辐射方案 | RRTMG |
短波辐射方案 | RRTMG |
陆面方案 | Noah land-surface model |
积云参数化方案 | Grell 3D |
沙尘排放方案 | GOCART |
气溶胶方案 | MOSAIC-4Bin |
试验设置 | 试验描述 |
---|---|
标准试验 | 打开模拟区域内所有沙尘源 |
敏感性实验1 | 关闭塔克拉玛干沙漠沙源 |
敏感性实验2 | 关闭塔尔沙漠沙源 |
敏感性实验3 | 关闭戈壁沙漠沙源 |
敏感性实验4 | 关闭古尔班通古特沙漠沙源 |
敏感性实验5 | 关闭中亚沙漠沙源 |
Table 2 WRF-Chem experimental design
试验设置 | 试验描述 |
---|---|
标准试验 | 打开模拟区域内所有沙尘源 |
敏感性实验1 | 关闭塔克拉玛干沙漠沙源 |
敏感性实验2 | 关闭塔尔沙漠沙源 |
敏感性实验3 | 关闭戈壁沙漠沙源 |
敏感性实验4 | 关闭古尔班通古特沙漠沙源 |
敏感性实验5 | 关闭中亚沙漠沙源 |
Fig.5 Comparison of the monthly mean sensible heat simulation results over the eastern Tibetan Plateau in 2018 with the multi-year monthly mean sensible heat from 32 observation stations located in the eastern Tibetan Plateau during 1960-2016
1 | Qiu J.The third pole[J].Nature,2008,454(7203):393-396. |
2 | Yang K, Chen Y, Qin J.Some practical notes on the land surface modeling in the Tibetan Plateau[J].Hydrology and Earth System Sciences,2009,13(5):687-701. |
3 | Cong Z, Kang S, Smirnov A,et al.Aerosol optical properties at NamCo,a remote site in central Tibetan Plateau[J].Atmospheric Research,2009,92(1):42-48. |
4 | Lau K, Kim K.Observational relationships between aerosol and Asian monsoon rainfall,and circulation[J].Geophysical Research Letters,2006,33:L21810. |
5 | Wu G, Duan A, Liu Y,et al.Tibetan Plateau climate dynamics:recent research progress and outlook[J].National Science Review,2015,2(1):100-116. |
6 | Huang J, Wang T, Wang W,et al.Climate effects of dust aerosols over East Asian arid and semiarid regions[J].Journal of Geophysical Research:Atmospheres,2014,119:11398-11416. |
7 | Wu C, Lin Z, Shao Y,et al.Drivers of recent decline in dust activity over East Asia[J].Nature Communications,2022,13:7105. |
8 | Kok J, Storelvmo T, Karydis V,et al.Mineral dust aerosol impacts on global climate and climate change[J].Nature Reviews Earth & Environment,2023,4(2):71-86. |
9 | Xu C, Ma Y, You C,et al.The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau[J].Atmospheric Chemistry and Physics,2015,15:12065-12078. |
10 | 延昊,张佳华,赵一平,等.青藏高原沙尘天气的遥感研究[J].中国沙漠,2006,26(6):932-934. |
11 | 韩永翔,奚晓霞,宋连春,等.青藏高原沙尘及其可能的气候意义[J].中国沙漠,2004,24(5):72-76. |
12 | Mao R, Gong D, Shao Y,et al.Numerical analysis for contribution of the Tibetan Plateau to dust aerosols in the atmosphere over the East Asia[J].Science China Earth Sciences,2013,56:301-310. |
13 | Dong Z, Brahney J, Kang S,et al.Aeolian dust transport, cycle and influences in high-elevation cryosphere of the Tibetan Plateau region:new evidences from alpine snow and ice[J].Earth-Science Reviews,2020,211:103408. |
14 | Chen S, Zhang R, Mao R,et al.Sources, characteristics and climate impact of light-absorbing aerosols over the Tibetan Plateau[J].Earth-Science Reviews,2022,232:104111. |
15 | Hu Z, Huang J, Zhao C,et al.Modeling dust sources,transport,and radiative effects at different altitudes over the Tibetan Plateau[J].Atmospheric Chemistry and Physics,2020,20(3):1507-1529. |
16 | Wang T, Tang J, Sun M,et al.Identifying a transport mechanism of dust aerosols over South Asia to the Tibetan Plateau:a case study[J].Science of the Total Environment,2021,758:143714. |
17 | Mao R, Hu Z, Zhao C,et al.The source contributions to the dust over the Tibetan Plateau:a modelling analysis[J].Atmospheric Environment,2019,214:116. |
18 | 张璐,李倩惠,孟露,等.深厚大气边界层演变与湍流运动、沙尘滞空的研究[J].地球科学进展,2022,37(10):991-1004. |
19 | 万云霞,张宇,张瑾文,等.感热变化对东亚地区大气边界层高度的影响[J].高原气象,2017,36(1):173-182. |
20 | Grell G, Peckham S, Schmitz R,et al.Fully coupled “online” chemistry within the WRF model[J].Atmospheric Environment,2005,39(37):6957-6975. |
21 | Ginoux P, Chin M, Tegen I,et al.Sources and distributions of dust aerosols simulated with the GOCART model[J].Journal of Geophysical Research:Atmospheres,2001,106(D17):20255-20273. |
22 | Zhao C, Liu X, Ruby L,et al.Radiative impact of mineral dust on monsoon precipitation variability over West Africa[J].Atmospheric Chemistry and Physics,2011,11:1879-1893. |
23 | Zhao C, Liu X, Ruby L.Impact of the Desert dust on the summer monsoon system over Southwestern North America[J].Atmospheric Chemistry and Physics,2012,12:3717-3731. |
24 | Chen S, Huang J, Kang L,et al.Emission,transport and radiative effects of mineral dust from Taklimakan and Gobi Deserts:comparison of measurements and model results[J].Atmospheric Chemistry and Physics,2017,17(3):1-43. |
25 | Diner D, Beckert J, Reilly T,et al.Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(4):1072-1087. |
26 | Monin A, Obukhov A.Basic laws of turbulent mixing in the atmosphere near the ground[J].TrAkad Nauk SSSR Geofiz Institute,1954,24:163-187. |
27 | Duan A, Li F, Wang M,et al.Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon[J].Journal of Climate,2011,24:5671-5682. |
28 | Duan A, Sun R, He J.Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high:a landvair-sea interaction perspective[J].Advances in Atmospheric Sciences,2017,34:157-168. |
29 | Duan A, Liu S, Zhao Y,et al.Atmospheric heat source/sink dataset over the Tibetan Plateau based on satellite and routine meteorological observations[J].Big Earth Data,2018,2(2):179-189. |
30 | Feng X, Mao R, Gong D,et al.Increased dust aerosols in the high troposphere over the Tibetan Plateau from 1990s to 2000s[J].Journal of Geophysical Research:Atmospheres,2020,125(13):e2020JD032807. |
31 | 叶笃正,罗四维,朱抱真.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报,1957,28(2):108-121. |
32 | 李本涛,张镭,张云舒,等.青藏高原沙尘气溶胶时空变化及其来源地分析[J].高原气象,2023,42(3):564-574. |
[1] | Haokun Mo, Guangyin Hu, Huicong Meng. Research progress on aeolian activity in the Qinghai Lake area, northeastern Tibetan Plateau [J]. Journal of Desert Research, 2023, 43(6): 197-209. |
[2] | Zhulei Dong, Xuegong Jiang, Nana Yi, Zhili Xu, Yuehe Hang, Shuiyan Yu. Numerical simulation of the influence of wind speed and vegetation on dust weather in Inner Mongolia, China [J]. Journal of Desert Research, 2023, 43(6): 29-39. |
[3] | Mengjun Hu, Jing Zhuang, Wenli Sun, Dengyou Zheng, Tianqi Ji, Aokang Xu. Geochemical characteristics of major elements and environmental evolution in the Holocene in the northeastern Tibetan Plateau [J]. Journal of Desert Research, 2023, 43(2): 11-20. |
[4] | Aihua Hao, Xian Xue, Quangang You, Chaoyang Gou. Review on precipitation change over the Qinghai-Tibetan Plateau in recent 60 years [J]. Journal of Desert Research, 2023, 43(2): 43-52. |
[5] | Jingjing Hu, Guangyin Hu, Zhibao Dong. Particle size characteristics of aeolian desertified land in Madoi Basin of the source region of Yellow River [J]. Journal of Desert Research, 2022, 42(4): 242-252. |
[6] | Siyu Chen, Yawen Guan, Dan Zhao, Gaotong Lou, Yu Chen. Influence of dust aerosol on land surface diurnal temperature range over East Asia Simulated with the WRF-Chem model [J]. Journal of Desert Research, 2022, 42(3): 127-138. |
[7] | Fangming Zeng, Hongpan Xue. The dataset of elemental compositions of the late Pleistocene loess-paleosol deposits on the northeastern Tibetan Plateau [J]. Journal of Desert Research, 2021, 41(6): 262-264. |
[8] | Guangyin Hu, Zhibao Dong, Zhengcai Zhang, Ming Zhou, Lunyu Shang. The regime of sand driving wind and sand drift potential in Zoige Basin [J]. Journal of Desert Research, 2020, 40(5): 20-24. |
[9] | Yi Nana, Jiang Xuegong, Dong Zhulei, Yu Shuiyan, Kang Shengwei. Numerical simulation of a dust process in Inner Mongolia of China [J]. Journal of Desert Research, 2020, 40(3): 115-126. |
[10] | Hua Cong, Liu Chao, Zhang Bihui. Comparative Analysis of Transport Characteristics of Two Dust Events Affecting Beijing [J]. Journal of Desert Research, 2019, 39(6): 99-107. |
[11] | Yao Huiru, Li Dongliang. The Gale Concentration Period and Degree over the Tibetan Plateau and Related Atmospheric Circulation during the Windy Period [J]. Journal of Desert Research, 2019, 39(2): 122-133. |
[12] | Sun Yan, Wang Yibo, Sun Zhe, Liu Guohu, Gao Zeyong. Impact of Soil Organic Matter on Water Hold Capacity in Permafrost Active Layer in the Tibetan Plateau [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(2): 288-295. |
[13] | Kang Litai, Chen Siyu. Numerical Modeling of a Dust Storm Process in Northern China [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(2): 321-331. |
[14] | Zu Ruiping, He Zhilin, Zong Yumei, Qu Jianjun, Niu Qinghe. Review on the Influences of Sand Accumulation on Permafrost in the Tibetan Plateau [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(5): 1208-1214. |
[15] | YANG Xing-hua1,2, HE Qing1,2, Ali Mamtimin1,2, HUO Wen1,2, LIU Xin-chun1,2. Observational Study on Near-surface Horizontal Sand-dust Flux of Sandstorms in the Southeastern Fringe of the Taklimakan Desert [J]. JOURNAL OF DESERT RESEARCH, 2013, 33(5): 1299-1304. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech