生物土壤与生态 |
|
|
|
|
Characterizations of Chlorophyll Fluorescence Parameters and Stem Water Potentials of Populus euphratica and Populus pruinosa Grown in the Hinterland of Taklimakan Desert |
HAN Wei1,2, Hamid Yimit3, LI Li4, LI Sheng-yu4, ZHENG Ting-ting4 |
1.School of Resources and Environment Sciences, Xinjiang University, Urumqi 830046, China; 2.Ministry of Education Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China; 3.Xinjiang Normal University, Urumqi 830054, China; 4.Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China |
|
|
Abstract The characteristics of acclimation in photochemistry, thermal energy dissipation and electron transport in leaves of Populus euphratica and Populus pruinosa trees in the hinterland of Taklimakan Desert were studied by measuring chlorophyll-a fluorescence and stem water potentials. The stem water potentials of P. euphratica were lower than that of P. pruinosa no matter in the weak light in the morning or in the high light at noon, which indicated the bigger water absorbing of P. euphratica. The integral area of P. euphratica at daytime was bigger than that of P. pruinosa in moderate light days, which suggested the more energy accumulation of P. euphratica. PAR at noon inhibited a little to the electron transport of P. euphratica, formed double-peak curves of NPQ in P. pruinosa but single-peak curves in P. euphratica. The energy utilizing proportions of P. euphratica presented as Y(NO)∶Y(NPQ)∶Y(Ⅱ)=18%∶50%∶32%; for P. pruinosa, Y(NO)∶Y(NPQ)∶Y(Ⅱ)=16%∶19%∶65%, which showed P. euphratica had a stronger stress-tolerance. The results indicated that both P. euphratica and P. pruinosa grown in the hinterland of Taklimakan Desert could acclimate to high light intensity at noon by increasing the fractions of thermal energy dissipation, but P. euphratica had more regulating capacity than P. pruinosa.
|
Received: 09 July 2010
Published: 20 November 2011
|
|
Cite this article:
HAN Wei;Hamid Yimit;LI Li;LI Sheng-yu;ZHENG Ting-ting. Characterizations of Chlorophyll Fluorescence Parameters and Stem Water Potentials of Populus euphratica and Populus pruinosa Grown in the Hinterland of Taklimakan Desert. JOURNAL OF DESERT RESEARCH, 2011, 31(6): 1472-1478.
URL:
http://www.desert.ac.cn/EN/ OR http://www.desert.ac.cn/EN/Y2011/V31/I6/1472
|
[1]Klughammer C,Schreiber U.Complementary PS Ⅱ quantum yields calculated from simple fluorescence arameters measured by PAM fluorometry and the Saturation Pulse method[J].PAM Application Notes,2008,1:27-35. [2]Ball M C,Buttwerorth J A,Roden J S,et al.Application of chlorophyll fluorescence to forest ecology[J].Australian Journal of Plant Physiology,1994,22:311-319. [3]Xu X M,Zhang R X,Tang Y L.Effect of low content chlorophyll on distribution properties of absorbed light energy in leaves of Mutant rice[J].Agricultrual Sciences in China,2004,3(1):24-30. [4]陈华新,陈玮,姜闯道,等.光温交叉处理对小麦紫黄质脱环氧化酶活性及其热耗散能力的影响[J].植物生态学报,2008,32(5):1015-1022. [5]程明,李志强,姜闯道,等.青稞的光合特性及光破坏防御机制[J].作物学报,2008,34(10):1805-1811. [6]冯玉龙,曹坤芳.生长光强对4种热带雨林树苗光合机构的影响[J].植物生理与分子生物学学报,2002,28(2):153-160. [7]冯志立,冯玉龙,曹坤芳.光强对砂仁叶片光合作用光抑制及热耗散的影响[J].植物生态学报,2002,26(1):77-82. [8]韩春丽,孙中海,王艳,等.不同光强对纽荷尔脐橙叶片PSⅡ功能和光能分配的影响[J].果树学报,2008,25(1):40-44. [9]林植芳,彭长连.4种木本植物叶片的光合电子传递和吸收光能分配特性对光强的适应[J].植物生理学报,2000,26(5):387-392. [10]龚吉蕊,赵爱芬,苏培玺,等.黑河流域几个主要植物种光合特征的比较研究[J].中国沙漠,2005,25(4):587-592. [11]闫海龙,张希明,许浩,等.塔里木沙漠公路防护林植物沙拐枣气体交换特性对干旱胁迫的响应[J].中国沙漠,2007,27(3):460-465. [12]杨甲定,赵哈林,张铜会.小叶锦鸡儿离体叶片对温度处理的某些生理响应[J].中国沙漠,2004,24(5):634-636. [13]Peterson R B.Partitioning of noncyclic photosynthetic electron transport to O2-dependent dissipative processes as probed by fluorescence and CO2 exchange[J].Plant Physiolgy,1989,90:1322-1328. [14]Demmig-Adams B,Adams Ⅲ W W,Barker D H,et al.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J].Physiologia Plantarum,1996,98:253-264. [15]付爱红,陈亚宁,李卫红.新疆塔里木河下游胡杨不同叶形水势变化研究[J].中国沙漠,2008,28(1):83-88. [16]罗青红,李志军,伍维模,等.胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究[J].西北植物学报,2006,26(5):983-988. [17]施征,史胜青,肖文发,等.脱水胁迫对梭梭和胡杨苗叶绿素荧光特性的影响[J].林业科学研究,2008,21(4):566-570. [18]Johnson G N,Youn G A J,Scholes J D.The dissipation of excess excitation energy in British plant species[J].Plant,Cell and Environment,1993,16:673-679. [19]周朝彬,宋于洋,王炳举,等.干旱胁迫对胡杨光合和叶绿素荧光参数的影响[J].西北林学院学报,2009,24(4):5-9. [20]王训明,董治宝.塔克拉玛干沙漠中部部分地区风沙环境特征[J].中国沙漠,2001,21(1):56-61. [21]雷加强,王雪芹.塔里木沙漠公路风沙危害形成研究[J].干旱区研究,2003,20(1):1-6. [22]Schreiber U.Pulse-amplitude-modulation(PAM) fluoremetry and saturation pulse method: an overview[M]//Papageorgiou G C,Govindjee.Chlorophyll Flourescence:A signature of Photosynthesis.Springer,Dordrecht,2004:279-319. [23]Genty B,Harbinson J,Cailly A L,et al.Fate of excitation at PS Ⅱ in leaves:the non-photochemical side[C]//The Third BBSRC Robert Hill Symposium on Photosynthesis.University of Sheffield,Department of Molecular Biology and Biotechnology,Western Bank,Sheffield,UK.28,1996. [24]周洪华,陈亚宁,李卫红,等.干旱区胡杨光合作用对高温和CO2浓度的响应[J].生态学报,2009,29(6):2797-2810. [25]周洪华,陈亚宁,李卫红,等.塔里木河下游胡杨气体交换特性及其环境解释[J].中国沙漠,2008,28(4):665-672. [26]常宗强,冯起,苏永红,等.额济纳绿洲胡杨的光合特征及其对光强和CO2浓度的响应[J].干旱区地理,2006,29(4):496-502. [27]曾凡江,张希明,李向义,等.塔克拉玛干沙漠南缘柽柳和胡杨水势季节变化研究[J].应用生态学报,2005,16(8):1389-1393. [28]宋耀选,周茂先,张小由,等.额济纳绿洲主要植物的水势与环境因子的关系[J].中国沙漠,2005,25(4):496-499. [29]徐军亮,马履一,王华田.油松人工林SPAC水势梯度的时空变异[J].北京林业大学学报,2003,25(5):1-5. [30]Xu D Q,Zhang Y Z,Zhang R X.Photoinhibition of photosynthesis in plants[J].Plant Physiology Communcations,1992,28(4):237-243. [31]Chen Y P,Chen Y N,Li H,et al.Characterization of photosynthesis of Populus euphratica grown in the arid region[J].Photosynthetica,2006,44(4):622-626. [32]Sage R F.Atmospheric modification and vegetation responses to environmental stress[J].Global Change Biology,1996(2):79-83. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|