Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (3): 175-184.DOI: 10.7522/j.issn.1000-694X.2025.00036
Previous Articles Next Articles
Fan Du1,2(), Jungang Yang2, Xing Guo2, Yongxing Lu2, Ye Tao2, Benfeng Yin2, Xiaoying Rong2, Yonggang Li2,3, Yuanming Zhang2, Xiaobing Zhou2(
)
Received:
2025-03-24
Revised:
2025-04-24
Online:
2025-05-20
Published:
2025-06-30
Contact:
Xiaobing Zhou
CLC Number:
Fan Du, Jungang Yang, Xing Guo, Yongxing Lu, Ye Tao, Benfeng Yin, Xiaoying Rong, Yonggang Li, Yuanming Zhang, Xiaobing Zhou. Vertical distribution characteristics and influencing factors of soil organic carbon under cyanobacterial crusts in the Northwest desert region of China[J]. Journal of Desert Research, 2025, 45(3): 175-184.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00036
点位 | 主要沙区 | 纬度 N/(°) | 经度 E/(°) | 年均气温 MAT/(℃) | 年均降水量 MAP/mm | 干旱指数 AI | 植被类型 |
---|---|---|---|---|---|---|---|
G1 | 古尔班通古特沙漠 | 45.30109 | 87.15127 | 7.56 | 162 | 0.1022 | 温带矮半乔木/灌木荒漠 |
G2 | 古尔班通古特沙漠 | 45.24653 | 87.67413 | 6.86 | 164 | 0.1069 | |
G3 | 古尔班通古特沙漠 | 45.13156 | 88.30210 | 6.11 | 185 | 0.1245 | |
G4 | 古尔班通古特沙漠 | 44.94260 | 88.65117 | 6.68 | 167 | 0.1085 | |
G5 | 库布其沙漠 | 40.38708 | 108.63548 | 7.06 | 236 | 0.1479 | 温带半灌木荒漠 |
G6 | 库布其沙漠 | 40.04151 | 108.67425 | 6.60 | 267 | 0.1724 | |
G7 | 腾格里沙漠 | 38.88572 | 102.72562 | 7.84 | 118 | 0.0704 | 温带半灌木、矮半灌木荒漠 |
G8 | 腾格里沙漠 | 37.96888 | 103.37158 | 8.25 | 159 | 0.0998 | |
G9 | 腾格里沙漠 | 38.26532 | 104.05925 | 8.68 | 146 | 0.0882 | |
G10 | 腾格里沙漠 | 38.52553 | 104.97848 | 8.97 | 164 | 0.0956 | |
G11 | 腾格里沙漠 | 38.78888 | 105.46609 | 8.74 | 168 | 0.0973 | |
G12 | 毛乌素沙地 | 38.86390 | 107.91095 | 7.37 | 292 | 0.1908 | 温带丛生禾草典型草原 |
Table 1 Detailed information of sampling sites in the northwest desert region of China
点位 | 主要沙区 | 纬度 N/(°) | 经度 E/(°) | 年均气温 MAT/(℃) | 年均降水量 MAP/mm | 干旱指数 AI | 植被类型 |
---|---|---|---|---|---|---|---|
G1 | 古尔班通古特沙漠 | 45.30109 | 87.15127 | 7.56 | 162 | 0.1022 | 温带矮半乔木/灌木荒漠 |
G2 | 古尔班通古特沙漠 | 45.24653 | 87.67413 | 6.86 | 164 | 0.1069 | |
G3 | 古尔班通古特沙漠 | 45.13156 | 88.30210 | 6.11 | 185 | 0.1245 | |
G4 | 古尔班通古特沙漠 | 44.94260 | 88.65117 | 6.68 | 167 | 0.1085 | |
G5 | 库布其沙漠 | 40.38708 | 108.63548 | 7.06 | 236 | 0.1479 | 温带半灌木荒漠 |
G6 | 库布其沙漠 | 40.04151 | 108.67425 | 6.60 | 267 | 0.1724 | |
G7 | 腾格里沙漠 | 38.88572 | 102.72562 | 7.84 | 118 | 0.0704 | 温带半灌木、矮半灌木荒漠 |
G8 | 腾格里沙漠 | 37.96888 | 103.37158 | 8.25 | 159 | 0.0998 | |
G9 | 腾格里沙漠 | 38.26532 | 104.05925 | 8.68 | 146 | 0.0882 | |
G10 | 腾格里沙漠 | 38.52553 | 104.97848 | 8.97 | 164 | 0.0956 | |
G11 | 腾格里沙漠 | 38.78888 | 105.46609 | 8.74 | 168 | 0.0973 | |
G12 | 毛乌素沙地 | 38.86390 | 107.91095 | 7.37 | 292 | 0.1908 | 温带丛生禾草典型草原 |
类型 | 土层 /cm | 酸碱度 pH | 电导率 EC /(μS·cm-1) | 全氮 TN /(mg·kg-1) | 硝态氮 NO /(mg·kg-1) | 铵态氮 NH /(mg·kg-1) | 全磷 TP /(mg·kg-1) | 速效磷 AP /(mg·kg-1) | 土壤含水率SWC /% |
---|---|---|---|---|---|---|---|---|---|
裸沙 | 0~2 | 8.15±0.09a | 105.91±14.38a | 98.59±19.56a | 12.21±6.93a | 8.78±1.31a | 259.89±53.25a | 3.14±0.45a | 0.12±0.04b |
2~5 | 8.22±0.10a | 120.67±34.85a | 94.66±17.73a | 9.82±4.51a | 7.38±1.28a | 243.56±46.20a | 3.20±0.36a | 0.20±0.07b | |
5~10 | 8.27±0.09a | 90.91±8.53a | 95.14±18.01a | 11.28±7.06a | 6.80±1.21a | 237.19±46.82a | 2.84±0.26a | 0.31±0.09b | |
10~20 | 8.32±0.09a | 113.14±28.72a | 79.85±11.63a | 11.34±7.60a | 7.53±1.11a | 233.01±42.80a | 2.72±0.25a | 0.84±0.28a | |
藻结皮 | BSC | 7.72±0.09c | 194.91±37.15a | 202.71±30.34a | 10.90±2.79a | 11.43±1.50a | 365.15±43.00a | 3.37±0.40a | 0.18±0.03a |
0~2 | 8.14±0.08b | 161.83±50.30a | 147.62±23.26a | 12.11±4.41a | 6.56±1.41b | 282.09±39.65a | 3.18±0.36a | 0.19±0.02a | |
2~5 | 8.31±0.07ab | 165.78±65.19a | 134.15±23.42a | 12.66±5.73a | 6.15±1.25b | 269.44±41.53a | 3.20±0.33a | 0.34±0.11a | |
5~10 | 8.44±0.06a | 148.29±54.10a | 125.24±23.03a | 7.84±2.95a | 5.87±1.05b | 245.19±35.44a | 3.13±0.25a | 0.28±0.04a | |
10~20 | 8.51±0.06a | 136.24±36.39a | 124.15±24.78a | 6.87±2.35a | 6.98±1.25b | 263.09±45.28a | 2.88±0.27a | 0.35±0.08a |
Table 2 Soil physicochemical characteristics under bare sand and cyanobacterial crust coverage in the northwest desert region
类型 | 土层 /cm | 酸碱度 pH | 电导率 EC /(μS·cm-1) | 全氮 TN /(mg·kg-1) | 硝态氮 NO /(mg·kg-1) | 铵态氮 NH /(mg·kg-1) | 全磷 TP /(mg·kg-1) | 速效磷 AP /(mg·kg-1) | 土壤含水率SWC /% |
---|---|---|---|---|---|---|---|---|---|
裸沙 | 0~2 | 8.15±0.09a | 105.91±14.38a | 98.59±19.56a | 12.21±6.93a | 8.78±1.31a | 259.89±53.25a | 3.14±0.45a | 0.12±0.04b |
2~5 | 8.22±0.10a | 120.67±34.85a | 94.66±17.73a | 9.82±4.51a | 7.38±1.28a | 243.56±46.20a | 3.20±0.36a | 0.20±0.07b | |
5~10 | 8.27±0.09a | 90.91±8.53a | 95.14±18.01a | 11.28±7.06a | 6.80±1.21a | 237.19±46.82a | 2.84±0.26a | 0.31±0.09b | |
10~20 | 8.32±0.09a | 113.14±28.72a | 79.85±11.63a | 11.34±7.60a | 7.53±1.11a | 233.01±42.80a | 2.72±0.25a | 0.84±0.28a | |
藻结皮 | BSC | 7.72±0.09c | 194.91±37.15a | 202.71±30.34a | 10.90±2.79a | 11.43±1.50a | 365.15±43.00a | 3.37±0.40a | 0.18±0.03a |
0~2 | 8.14±0.08b | 161.83±50.30a | 147.62±23.26a | 12.11±4.41a | 6.56±1.41b | 282.09±39.65a | 3.18±0.36a | 0.19±0.02a | |
2~5 | 8.31±0.07ab | 165.78±65.19a | 134.15±23.42a | 12.66±5.73a | 6.15±1.25b | 269.44±41.53a | 3.20±0.33a | 0.34±0.11a | |
5~10 | 8.44±0.06a | 148.29±54.10a | 125.24±23.03a | 7.84±2.95a | 5.87±1.05b | 245.19±35.44a | 3.13±0.25a | 0.28±0.04a | |
10~20 | 8.51±0.06a | 136.24±36.39a | 124.15±24.78a | 6.87±2.35a | 6.98±1.25b | 263.09±45.28a | 2.88±0.27a | 0.35±0.08a |
指标 | 有机碳 SOC | 颗粒态有机碳 POC | 矿物结合态有机碳 MAOC | 酸碱度 pH | 电导率 EC | 全氮 TN | 硝态氮 NO | 铵态氮 NH | 全磷 TP | 速效磷 AP | 含水量 SWC |
---|---|---|---|---|---|---|---|---|---|---|---|
覆盖类型 | 16.41*** | 7.94** | 26.02*** | 3.63 | 2.52 | 6.93* | 0.12 | 1.88 | 0.48 | 0.27 | 1.00 |
土层深度 | 6.56*** | 2.25 | 11.99*** | 15.13*** | 0.31 | 2.28 | 0.12 | 3.46* | 1.16 | 0.59 | 4.33** |
覆盖类型×土层深度 | 0.38 | 0.17 | 0.58 | 0.66 | 0.08 | 0.07 | 0.20 | 0.16 | 0.02 | 0.08 | 3.21* |
Table 3 Two-way ANOVA of the effects of cover type and soil depth on soil organic carbon fractions and soil physicochemical characteristics ( F-Values)
指标 | 有机碳 SOC | 颗粒态有机碳 POC | 矿物结合态有机碳 MAOC | 酸碱度 pH | 电导率 EC | 全氮 TN | 硝态氮 NO | 铵态氮 NH | 全磷 TP | 速效磷 AP | 含水量 SWC |
---|---|---|---|---|---|---|---|---|---|---|---|
覆盖类型 | 16.41*** | 7.94** | 26.02*** | 3.63 | 2.52 | 6.93* | 0.12 | 1.88 | 0.48 | 0.27 | 1.00 |
土层深度 | 6.56*** | 2.25 | 11.99*** | 15.13*** | 0.31 | 2.28 | 0.12 | 3.46* | 1.16 | 0.59 | 4.33** |
覆盖类型×土层深度 | 0.38 | 0.17 | 0.58 | 0.66 | 0.08 | 0.07 | 0.20 | 0.16 | 0.02 | 0.08 | 3.21* |
1 | Lal R.Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304(5677):1623-1627. |
2 | Zhou X B, Zhang S H, Chen Y S,et al.Environmental drivers of soil carbon and nitrogen accumulation in global drylands[J].Geoderma,2024,451:117075. |
3 | Lal R.Carbon sequestration in dryland ecosystems[J].Environmental Management,2004,33(4):528-544. |
4 | Lehmann J, Kleber M.The contentious nature of soil organic matter[J].Nature,2015,528(7580):60-68. |
5 | Belnap J.The potential roles of biological soil crusts in dryland hydrologic cycles[J].Hydrological Processes,2006,20(15):3159-3178. |
6 | Chen N, Yu K L, Jia R L,et al.Biocrust as one of multiple stable states in global drylands[J].Science Advances,2020,6(39):3763. |
7 | Qiu D X, Bowker M A, Xiao B,et al.Mapping biocrust distribution in China’s drylands under changing climate[J].Science of the Total Environment,2023,905:167211. |
8 | Sun H F, Li X L, Jin L Q,et al.Effects of biological soil crusts on soil labile organic carbon of patchy alpine meadows in the Source Zone of the Yellow River,West China[J].Catena,2023,220:106715. |
9 | Kleber M, Bourg I C, Coward E K,et al.Dynamic interactions at the mineral-organic matter interface[J].Nature Reviews Earth and Environment,2021,2(6):402-421. |
10 | Lavallee J M, Soong J L, Cotrufo M F.Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21st century[J].Global Change Biology,2020,26(1):261-273. |
11 | Von Lützow M, Kögel-Knabner I, Ekschmitt K,et al.SOM fractionation methods:relevance to functional pools and to stabilization mechanisms[J].Soil Biology and Biochemistry,2007,39(9):2183-2207. |
12 | Liang C, Amelung W, Lehmann J,et al.Quantitative assessment of microbial necromass contribution to soil organic matter[J].Global Change Biology,2019,25(11):3578-3590. |
13 | Haddix M L, Paul E A, Cotrufo M F.Dual,differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter[J].Global Change Biology,2016,22(6):2301-2312. |
14 | Kallenbach C M, Frey S D, Grandy A S.Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J].Nature Communications,2016,7(1):13630. |
15 | Zhang S H, Zhou X B, Chen Y S,et al.Soil organic carbon fractions in China: spatial distribution,drivers,and future changes[J].Science of the Total Environment,2024,919:170890. |
16 | Hansen P M, Even R, King A E,et al.Distinct,direct and climate-mediated environmental controls on global particulate and mineral-associated organic carbon storage[J].Global Change Biology,2024,30(1):e17080. |
17 | Rocci K S, Lavallee J M, Stewart C E,et al.Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter:a meta-analysis[J].Science of the Total Environment,2021,793:148569. |
18 | Wu M Y, Chen L, Chen S G,et al.Soil microbial carbon and nitrogen limitation constraints soil organic carbon stability in arid and semi-arid grasslands[J].Journal of Environmental Management,2025,373: 123675. |
19 | Xu H K, Zhang Y J, Shao X Q,et al.Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands:a meta-analysis[J].Science of the Total Environment,2022,803:150030. |
20 | Dou W Q, Xiao B, Wang Y F,et al.Contributions of three types of biocrusts to soil carbon stock and annual efflux in a small watershed of Northern Chinese Loess Plateau[J].Applied Soil Ecology,2022,179:104596. |
21 | 杭伟,陆永兴,郭浩,等.西北荒漠区土壤氮素组分沿干旱梯度的空间变化[J].中国沙漠,2024,44(3):259-268. |
22 | Cambardella C A, Elliott E T.Particulate Soil organic-matter changes across a grassland cultivation sequence[J].Soil Science Society of America Journal,1992,56(3):777-783. |
23 | 杨娥女,王宝荣,姚宏佳,等.黄土高原生物土壤结皮发育过程中颗粒态和矿物结合态有机碳变化特征[J].水土保持研究,2023,30:25-33. |
24 | 庞景文,卜崇峰,郭琦,等.毛乌素沙地区域尺度生物结皮有机碳空间分布特征及其影响因素[J].应用生态学报,2022,33(7):1755-1763. |
25 | 张清杭,吕杰,马媛,等.古尔班通古特沙漠不同区域藻类结皮微生物结构和潜在功能[J].生态学报,2024,44(14):6317-6330. |
26 | 王芳芳,肖波,李胜龙,等.黄土高原生物结皮对土壤养分的表层聚集与吸附固持效应[J].植物营养与肥料学报,2021,27(9):1592-1602. |
27 | 杨军刚,张玲卫,郭星,等.古尔班通古特沙漠生物土壤结皮下土壤有机碳垂直分布特征及影响因素[J].生态学报,2024,44(7):2946-2954. |
28 | 贺郝钰,刘蔚,常宗强,等.腾格里沙漠南缘植被恢复对土壤有机碳组成及稳定性的影响[J].中国沙漠,2024,44(6):307-317. |
29 | Dou W Q, Xiao B, Revillini D,et al.Biocrusts enhance soil organic carbon stability and regulate the fate of new-input carbon in semiarid desert ecosystems[J].Science of the Total Environment,2024,918:170794. |
30 | Zhou Z H, Ren C J, Wang C K,et al.Global turnover of soil mineral-associated and particulate organic carbon[J].Nature Communications,2024,15(1):5329. |
31 | Chen Y Q, Xi H Y, Cheng W J.Spatiotemporal dynamics of soil organic carbon in desert region and its response to climate change:a case study of Heihe river[J].Ecological Indicators,2025,170:113005. |
32 | Nielsen U N, Ball B A.Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi‐arid ecosystems[J].Global Change Biology,2015,21(4):1407-1421. |
33 | 韩梦梦,罗炘武,粟春青,等.生物结皮对土壤养分及碳循环影响的研究进展[J].北方园艺,2023(24):132-137. |
34 | Zhou X H, Feng Z Q, Yao Y X,et al.Nitrogen input alleviates the priming effects of biochar addition on soil organic carbon decomposition[J].Soil Biology and Biochemistry,2025,202:109689. |
35 | He J H, Nie Y X, Tan X P,et al.Latitudinal patterns and drivers of plant lignin and microbial necromass accumulation in forest soils:disentangling microbial and abiotic controls[J].Soil Biology and Biochemistry,2024,194:109438. |
36 | Tie L H, Hu J X, Peñuelas J,et al.The amounts and ratio of nitrogen and phosphorus addition drive the rate of litter decomposition in a subtropical forest[J].Science of the Total Environment,2022,833:155163. |
37 | Wang C Q, Kuzyakov Y.Soil organic matter priming:the pH effects[J].Global Change Biology,2024,30(6):e17349. |
[1] | Jiale Li, Beibei Chen, Dinghai Zhang. Research progress on spatial point pattern of sand-fixing shrubs in sandy regions of Northern China [J]. Journal of Desert Research, 2025, 45(3): 102-112. |
[2] | Yunzheng Wang, Yimeng Wang, Jianguo Liu, Xiaowei Shang, Minlan Li, Benli Liu. Suitability zoning and ecological construction of photovoltaic power plants in Badain Jaran Desert and neighboring areas [J]. Journal of Desert Research, 2025, 45(1): 173-184. |
[3] | Haoyu He, Wei Liu, Zongqiang Chang, Chunmei Hou, Liwei Sun, Xiuli Chi. Effects of revegetation on soil organic carbon composition and stability in the southern edge of the Tengger Desert [J]. Journal of Desert Research, 2024, 44(6): 307-317. |
[4] | Chunming Xin, Mingzhu He, Chengyi Li, Libin Zhang, Xinrong Li. A review of research progress on nitrous oxide emissions from desert soil and its driving factors [J]. Journal of Desert Research, 2023, 43(2): 184-194. |
[5] | Wenwen Xu, Yanqiao Zhao, Nan Wang, Yang Zhao. Effects of artificial biological soil crusts on the composition and diversity of herbaceous plant communities [J]. Journal of Desert Research, 2022, 42(5): 204-211. |
[6] | Guangzhao Han, Guangchao Cao, Shengkui Cao, Wenqian Ye. Soil particle organic carbon isotope decomposition characteristics of ecological restoration grassland and woodland in alpine region [J]. Journal of Desert Research, 2022, 42(5): 36-43. |
[7] | Zhishan Zhang, Guisen Yang, Lü Xingyu, Rui Hu, Lei Huang. Research progresses in ecological stoichiometry of C, N and P in desert ecosystems [J]. Journal of Desert Research, 2022, 42(1): 48-56. |
[8] | Chengbing Gao, Zongqiang Chang. Effects of water input on litter decomposition and nitrogen dynamics of desert vegetation in the Liangucheng National Nature Reserve, Gansu, China [J]. Journal of Desert Research, 2021, 41(2): 145-152. |
[9] | Zhao Hongmei, Cheng Junhui, Zhang Wentai, Su Yangui, Zhang Caiyun, Sheng Jiandong. Litters decomposition characteristics of five species in the Gurbantunggut Desert [J]. Journal of Desert Research, 2020, 40(2): 165-176. |
[10] | Cui Xianghui, Lu Qi, Guo Hao. Construction of Standard System for Long-term Observation of Chinese Desert Ecosystem [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(6): 1121-1126. |
[11] | Jia Xiaohong, Gu Chen, Wu Bo, Li Yuanshou, Cheng Long, Li Xinrong. Responses of Carbon Dioxide Fluxes from Biological Soil Crusted Soils to Pulse Rain in Arid Desert Ecosystem [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(2): 423-432. |
[12] | Li Xinrong, Zhou Haiyan, Wang Xinping, Liu Lichao, Zhang Jingguang, Chen Guoxiong, Zhang Zhishan, Liu Yubing, Tan Huijuan, Gao Yanhong. Ecological Restoration and Recovery in Arid Desert Regions of China: A review for 60-year research progresses of Shapotou Desert Research and Experiment Station, Chinese Academy of Sciences [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(2): 247-264. |
[13] | Zhang Ke, Chen Yongle, Gao Yanhong, Hui Rong, He Mingzhu. Stoichiometry Characteristics of Leaf Nitrogen and Phosphorus of Different Plant Functional Groups in Alashan Desert Region [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(5): 1261-1267. |
[14] | Li Aixia, Cao Zhanjiang, Tan Huijuan. Construction and Development of the Desert Long-term Ecosystem Monitoring Data and Information Management System for the Shapotou Station [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(2): 617-624. |
[15] | Zhou Qi, Li Pingheng, Wang Quan, Zheng Chaolei, Xu Lu. A Footprint Analysis on a Desert Ecosystem in West China [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(1): 98-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech