Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (5): 318-327.DOI: 10.7522/j.issn.1000-694X.2025.00024
Lingfei Zhong1(), Hu Liu2, Lihua Zhang1(
)
Received:
2024-11-23
Revised:
2025-02-19
Online:
2025-09-20
Published:
2025-09-27
Contact:
Lihua Zhang
CLC Number:
Lingfei Zhong, Hu Liu, Lihua Zhang. Relationship between NDVI and precipitation in the Hexi Corridor desert area[J]. Journal of Desert Research, 2025, 45(5): 318-327.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00024
样区 | 年降水量/mm | 地下水埋深 /m | |||
---|---|---|---|---|---|
平均 | 丰水年(2019年) | 平水年(2011年) | 枯水年(2013年) | ||
金塔北海子湿地 | 104.9±39.5 | 220.9 | 78.5 | 98.3 | 1.90±0.57 |
临泽平川镇湿地 | 117.5±29.7 | 146.9 | 95.9 | 90.3 | 2.46±0.28 |
民勤青土湖边缘区 | 122.9±23.6 | 127.0 | 139.2 | 84.5 | 3.24±0.34 |
民勤青土湖湿地 | 122.9±23.6 | 127.0 | 139.2 | 84.5 | 3.24±0.34 |
临泽一工程固沙区 | 117.5±29.7 | 146.9 | 95.9 | 90.3 | 4.37±0.74 |
山丹荒漠草地 | 229.9±46.1 | 358.7 | 255.0 | 167.7 | 12.74±0.52 |
Table 1 Precipitation change characteristics in the sample areas from 2001 to 2020
样区 | 年降水量/mm | 地下水埋深 /m | |||
---|---|---|---|---|---|
平均 | 丰水年(2019年) | 平水年(2011年) | 枯水年(2013年) | ||
金塔北海子湿地 | 104.9±39.5 | 220.9 | 78.5 | 98.3 | 1.90±0.57 |
临泽平川镇湿地 | 117.5±29.7 | 146.9 | 95.9 | 90.3 | 2.46±0.28 |
民勤青土湖边缘区 | 122.9±23.6 | 127.0 | 139.2 | 84.5 | 3.24±0.34 |
民勤青土湖湿地 | 122.9±23.6 | 127.0 | 139.2 | 84.5 | 3.24±0.34 |
临泽一工程固沙区 | 117.5±29.7 | 146.9 | 95.9 | 90.3 | 4.37±0.74 |
山丹荒漠草地 | 229.9±46.1 | 358.7 | 255.0 | 167.7 | 12.74±0.52 |
样区 | 群落学特征 | 主要依赖的水分来源 |
---|---|---|
金塔北海子湿地 | 湖泊湿地。芦苇为优势植物,少量分布柽柳和黑果枸杞,植被覆盖度约为40% | 地表水 |
临泽平川镇湿地 | 河岸湿地。有柽柳、芦苇等植物生长, 植被覆盖度40%~60% | 地表水 |
民勤青土湖边缘区 | 白刺沙堆。位于湿地边缘,白刺沙堆为主要景观,优势植物为白刺,有骆驼蓬、驼蹄瓣等,植被覆盖度30%以下 | 地下水 |
民勤青土湖湿地 | 尾闾湖湿地。群落由芦苇、拂子茅、罗布麻等组成,优势植物为芦苇,植被覆盖度50%以上 | 地下水 |
临泽一工程固沙区 | 梭梭人工固沙林。有天然沙拐枣生长,丘间低地有白刺沙堆,植被覆盖度60%~70% | 降水 |
山丹荒漠草地 | 荒漠草地。植物有红砂、珍珠等,也有羊茅、针茅、芨芨草等,植被覆盖度约为20%以下 | 降水 |
Table 2 Plant community characteristics and possible moisture source characteristics in the sample areas
样区 | 群落学特征 | 主要依赖的水分来源 |
---|---|---|
金塔北海子湿地 | 湖泊湿地。芦苇为优势植物,少量分布柽柳和黑果枸杞,植被覆盖度约为40% | 地表水 |
临泽平川镇湿地 | 河岸湿地。有柽柳、芦苇等植物生长, 植被覆盖度40%~60% | 地表水 |
民勤青土湖边缘区 | 白刺沙堆。位于湿地边缘,白刺沙堆为主要景观,优势植物为白刺,有骆驼蓬、驼蹄瓣等,植被覆盖度30%以下 | 地下水 |
民勤青土湖湿地 | 尾闾湖湿地。群落由芦苇、拂子茅、罗布麻等组成,优势植物为芦苇,植被覆盖度50%以上 | 地下水 |
临泽一工程固沙区 | 梭梭人工固沙林。有天然沙拐枣生长,丘间低地有白刺沙堆,植被覆盖度60%~70% | 降水 |
山丹荒漠草地 | 荒漠草地。植物有红砂、珍珠等,也有羊茅、针茅、芨芨草等,植被覆盖度约为20%以下 | 降水 |
样区 | NDVI平均值 | NDVI最大值 | NDVI最小值 | |||
---|---|---|---|---|---|---|
相关性 | P | 相关性 | P | 相关性 | P | |
金塔北海子湿地 | 0.31 | 0.18 | 0.27 | 0.24 | 0.38 | 0.10 |
临泽平川镇湿地 | 0.49 | 0.03 | 0.24 | 0.30 | 0.14 | 0.54 |
民勤青土湖边缘区 | 0.80 | <0.005 | 0.75 | 0.01 | 0.07 | 0.83 |
民勤青土湖湿地 | 0.93 | <0.005 | 0.97 | <0.005 | 0.42 | 0.20 |
临泽一工程固沙区 | 0.34 | 0.15 | 0.34 | 0.13 | 0.16 | 0.51 |
山丹荒漠草地 | 0.15 | 0.34 | 0.13 | 0.30 | 0.15 | 0.33 |
Table 3 Pearson correlation results between NDVI and groundwater depth in the sample areas
样区 | NDVI平均值 | NDVI最大值 | NDVI最小值 | |||
---|---|---|---|---|---|---|
相关性 | P | 相关性 | P | 相关性 | P | |
金塔北海子湿地 | 0.31 | 0.18 | 0.27 | 0.24 | 0.38 | 0.10 |
临泽平川镇湿地 | 0.49 | 0.03 | 0.24 | 0.30 | 0.14 | 0.54 |
民勤青土湖边缘区 | 0.80 | <0.005 | 0.75 | 0.01 | 0.07 | 0.83 |
民勤青土湖湿地 | 0.93 | <0.005 | 0.97 | <0.005 | 0.42 | 0.20 |
临泽一工程固沙区 | 0.34 | 0.15 | 0.34 | 0.13 | 0.16 | 0.51 |
山丹荒漠草地 | 0.15 | 0.34 | 0.13 | 0.30 | 0.15 | 0.33 |
样区 | 平均值±σ | 最大值(年份) | 最小值(年份) | 突变点 | 突变前变异性 | 整体变异性 |
---|---|---|---|---|---|---|
金塔北海子湿地 | 0.13±0.04 | 0.25 (2019) | 0.09(2001) | 2010 | 0.09 | 0.36 |
临泽平川镇湿地 | 0.29±0.02 | 0.32 (2019) | 0.26(2001) | — | — | 0.07 |
民勤青土湖边缘区 | 0.11±0.04 | 0.20 (2019) | 0.09(2001) | 2014 | 0.04 | 0.32 |
民勤青土湖湿地 | 0.14±0.08 | 0.28 (2019) | 0.07(2001) | 2012 | 0.07 | 0.59 |
临泽一工程固沙区 | 0.15±0.03 | 0.20(2019) | 0.10(2001) | — | — | 0.20 |
山丹荒漠草地 | 0.19±0.03 | 0.23 (2019) | 0.12(2001) | — | — | 0.15 |
Table 4 Interannual variation characteristics of NDVI in the sample areas from 2001 to 2020
样区 | 平均值±σ | 最大值(年份) | 最小值(年份) | 突变点 | 突变前变异性 | 整体变异性 |
---|---|---|---|---|---|---|
金塔北海子湿地 | 0.13±0.04 | 0.25 (2019) | 0.09(2001) | 2010 | 0.09 | 0.36 |
临泽平川镇湿地 | 0.29±0.02 | 0.32 (2019) | 0.26(2001) | — | — | 0.07 |
民勤青土湖边缘区 | 0.11±0.04 | 0.20 (2019) | 0.09(2001) | 2014 | 0.04 | 0.32 |
民勤青土湖湿地 | 0.14±0.08 | 0.28 (2019) | 0.07(2001) | 2012 | 0.07 | 0.59 |
临泽一工程固沙区 | 0.15±0.03 | 0.20(2019) | 0.10(2001) | — | — | 0.20 |
山丹荒漠草地 | 0.19±0.03 | 0.23 (2019) | 0.12(2001) | — | — | 0.15 |
样区 | 平水年(2011年) | 枯水年(2013年) | 丰水年(2019年) | ||||||
---|---|---|---|---|---|---|---|---|---|
平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | |
金塔北海子湿地 | 0.10±0.04 | 0.21 | 0.01 | 0.10±0.03 | 0.18 | 0.02 | 0.22±0.10 | 0.39 | 0.04 |
临泽平川镇湿地 | 0.28±0.11 | 0.52 | 0.06 | 0.29±0.11 | 0.52 | 0.05 | 0.29±0.12 | 0.56 | 0.03 |
民勤青土湖边缘区 | 0.08±0.03 | 0.13 | 0.02 | 0.08±0.03 | 0.15 | 0.02 | 0.18±0.08 | 0.33 | 0.02 |
民勤青土湖湿地 | 0.07±0.02 | 0.12 | 0.02 | 0.12±0.07 | 0.25 | 0.01 | 0.25±0.13 | 0.49 | 0.02 |
临泽一工程固沙区 | 0.16±0.06 | 0.30 | 0.07 | 0.16±0.05 | 0.27 | 0.05 | 0.18±0.07 | 0.32 | 0.03 |
山丹荒漠草地 | 0.15±0.04 | 0.25 | 0.06 | 0.15±0.06 | 0.29 | 0.04 | 0.21±0.08 | 0.36 | 0.05 |
Table 5 Intra-annual NDVI changes of vegetation in the sample areas in years with different precipitation
样区 | 平水年(2011年) | 枯水年(2013年) | 丰水年(2019年) | ||||||
---|---|---|---|---|---|---|---|---|---|
平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | |
金塔北海子湿地 | 0.10±0.04 | 0.21 | 0.01 | 0.10±0.03 | 0.18 | 0.02 | 0.22±0.10 | 0.39 | 0.04 |
临泽平川镇湿地 | 0.28±0.11 | 0.52 | 0.06 | 0.29±0.11 | 0.52 | 0.05 | 0.29±0.12 | 0.56 | 0.03 |
民勤青土湖边缘区 | 0.08±0.03 | 0.13 | 0.02 | 0.08±0.03 | 0.15 | 0.02 | 0.18±0.08 | 0.33 | 0.02 |
民勤青土湖湿地 | 0.07±0.02 | 0.12 | 0.02 | 0.12±0.07 | 0.25 | 0.01 | 0.25±0.13 | 0.49 | 0.02 |
临泽一工程固沙区 | 0.16±0.06 | 0.30 | 0.07 | 0.16±0.05 | 0.27 | 0.05 | 0.18±0.07 | 0.32 | 0.03 |
山丹荒漠草地 | 0.15±0.04 | 0.25 | 0.06 | 0.15±0.06 | 0.29 | 0.04 | 0.21±0.08 | 0.36 | 0.05 |
样区 | NDVI平均值 | NDVI最大值 | NDVI最小值 | NDVI变异性 | |||||
---|---|---|---|---|---|---|---|---|---|
相关性 | P | 相关性 | P | 相关性 | P | 相关性 | P | ||
与年降水量 | 金塔北海子湿地 | 0.46 | 0.04 | 0.50 | 0.03 | 0.07 | 0.76 | 0.47 | 0.04 |
临泽平川镇湿地 | 0.29 | 0.21 | 0.44 | 0.05 | 0.05 | 0.82 | 0.49 | 0.03 | |
民勤青土湖边缘区 | 0.04 | 0.87 | 0.11 | 0.65 | 0.38 | 0.10 | 0.01 | 0.96 | |
民勤青土湖湿地 | 0.04 | 0.88 | 0.07 | 0.77 | 0.19 | 0.43 | 0.03 | 0.91 | |
临泽一工程固沙区 | 0.30 | 0.20 | 0.30 | 0.19 | 0.02 | 0.93 | 0.36 | 0.12 | |
山丹荒漠草地 | 0.55 | 0.01 | 0.66 | 0.12 | 0.07 | 0.77 | 0.52 | 0.02 | |
与生长季降水量 | 金塔北海子湿地 | 0.55 | 0.01 | 0.57 | 0.01 | 0.15 | 0.52 | 0.30 | 0.01 |
临泽平川镇湿地 | 0.31 | 0.03 | 0.35 | 0.01 | 0.10 | 0.69 | 0.25 | 0.00 | |
民勤青土湖边缘区 | 0.16 | 0.50 | 0.42 | 0.41 | 0.30 | 0.19 | 0.25 | 0.52 | |
民勤青土湖湿地 | 0.26 | 0.27 | 0.24 | 0.31 | 0.27 | 0.26 | 0.21 | 0.36 | |
临泽一工程固沙区 | 0.47 | 0.03 | 0.52 | 0.02 | 0.26 | 0.27 | 0.56 | 0.01 | |
山丹荒漠草地 | 0.53 | 0.02 | 0.65 | 0.16 | 0.11 | 0.65 | 0.70 | 0.02 |
Table 6 Pearson correlation coefficient between NDVI and annual precipitation and growing season precipitation in the sample areas
样区 | NDVI平均值 | NDVI最大值 | NDVI最小值 | NDVI变异性 | |||||
---|---|---|---|---|---|---|---|---|---|
相关性 | P | 相关性 | P | 相关性 | P | 相关性 | P | ||
与年降水量 | 金塔北海子湿地 | 0.46 | 0.04 | 0.50 | 0.03 | 0.07 | 0.76 | 0.47 | 0.04 |
临泽平川镇湿地 | 0.29 | 0.21 | 0.44 | 0.05 | 0.05 | 0.82 | 0.49 | 0.03 | |
民勤青土湖边缘区 | 0.04 | 0.87 | 0.11 | 0.65 | 0.38 | 0.10 | 0.01 | 0.96 | |
民勤青土湖湿地 | 0.04 | 0.88 | 0.07 | 0.77 | 0.19 | 0.43 | 0.03 | 0.91 | |
临泽一工程固沙区 | 0.30 | 0.20 | 0.30 | 0.19 | 0.02 | 0.93 | 0.36 | 0.12 | |
山丹荒漠草地 | 0.55 | 0.01 | 0.66 | 0.12 | 0.07 | 0.77 | 0.52 | 0.02 | |
与生长季降水量 | 金塔北海子湿地 | 0.55 | 0.01 | 0.57 | 0.01 | 0.15 | 0.52 | 0.30 | 0.01 |
临泽平川镇湿地 | 0.31 | 0.03 | 0.35 | 0.01 | 0.10 | 0.69 | 0.25 | 0.00 | |
民勤青土湖边缘区 | 0.16 | 0.50 | 0.42 | 0.41 | 0.30 | 0.19 | 0.25 | 0.52 | |
民勤青土湖湿地 | 0.26 | 0.27 | 0.24 | 0.31 | 0.27 | 0.26 | 0.21 | 0.36 | |
临泽一工程固沙区 | 0.47 | 0.03 | 0.52 | 0.02 | 0.26 | 0.27 | 0.56 | 0.01 | |
山丹荒漠草地 | 0.53 | 0.02 | 0.65 | 0.16 | 0.11 | 0.65 | 0.70 | 0.02 |
[1] | Orellana F, Verma P, Loheide S P,et al.Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems[J].Reviews of Geophysics,2012,50(RG3003):1-24. |
[2] | Kløve B, Ala-Aho P, Bertrand G,et al.Groundwater dependent ecosystems.part I:hydroecological status and trends[J].Environmental Science & Policy,2011,14 (7):770-781. |
[3] | Eamus D, Froend R.Groundwater-dependent ecosystems:the where,what and why of GDEs[J].Australian Journal of Botany,2006,54(2):91-96. |
[4] | Brown J, Bach L, Aldous A,et al.Groundwater-dependent ecosystems in Oregon:an assessment of their distribution and associated threats[J].Frontiers in Ecology and the Environment,2011,9(2):97-102. |
[5] | Yang X Y, Liu J.Assessment and valuation of groundwater ecosystem services:a case study of Handan City,China[J].Water,2020,12(5):11. |
[6] | 宋子奕,鲁程鹏,吴成城,等.2009-2019年河西走廊地下水位时空分布及演变趋势[J].水资源保护,2023,39(2):160-167. |
[7] | 赵良菊,肖洪浪,程国栋,等.黑河下游河岸林植物水分来源初步研究[J].地球学报,2008,29(6):709-718. |
[8] | 朱建佳,陈辉,邢星,等.柴达木盆地荒漠植物水分来源定量研究:以格尔木样区为例[J].地理研究,2015,34(2):285-292. |
[9] | 周海,赵文智,何志斌.两种荒漠生境条件下泡泡刺水分来源及其对降水的响应[J].应用生态学报,2017,28(7):2083-2092. |
[10] | 李宁,周海,任珩,等.不同地下水位处梭梭(Haloxylon ammodendron)水分来源特征[J].中国沙漠,2021,41(4):79-86. |
[11] | Eamus D, Zolfaghar S, Villalobos-Vega R,et al.Groundwater-dependent ecosystems:recent insights from satellite and field-based studies[J].Hydrology and Earth System Sciences,2015,19(10):4229-4256. |
[12] | Eamus D, Fu B, Springer A E,et al.Groundwater dependent ecosystems:classification,identification techniques and threats[M]//Eamus D,Fu B,Springer A E,et al.Integrated Groundwater Management:Concepts,Approaches and Challenges.New York,USA:Springer,2016:313-346. |
[13] | Rampheri M B, Dube T, Dondofema F,et al.Progress in the remote sensing of groundwater-dependent ecosystems in semi-arid environments[J].Physics and Chemistry of the Earth,2023,130:10. |
[14] | Liu C, Liu H, Yu Y,et al.Mapping groundwater-dependent ecosystems in arid Central Asia:implications for controlling regional land degradation[J].Science of The Total Environment,2021,797:149027. |
[15] | Duran-Llacer I, Arumí J L, Arriagada L,et al.A new method to map groundwater-dependent ecosystem zones in semi-arid environments:a case study in Chile[J].Science of The Total Environment,2022,816:151528. |
[16] | Martínez-Santos P, Díaz-Alcaide S, De La Hera-Portillo A,et al.Mapping groundwater-dependent ecosystems by means of multi-layer supervised classification[J].Journal of Hydrology,2021,603:126873. |
[17] | Zhou H, Zhao W Z, Zhang G F.Varying water utilization of Haloxylon ammodendron plantations in a desert-oasis ecotone[J].Hydrological Processes,2017,31 (4):825-835. |
[18] | 赵颖,刘冰,赵文智,等.荒漠绿洲湿地水分来源及植物水分利用策略[J].中国沙漠,2022,42(4):151-162. |
[19] | 符淙斌,王强.气候突变的定义和检测方法[J].大气科学,1992(4):482-493. |
[20] | Jarnevich C S, Stohlgren T J, Kumar S,et al.Caveats for correlative species distribution modeling[J].Ecological Informatics,2015,29:6-15. |
[21] | Shabani F, Kumar L, Ahmadi M.A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area[J].Ecology and Evolution,2016,6(16):5973-5986. |
[22] | 李传华,朱同斌,周敏,等.河西走廊植被净初级生产力时空变化及其影响因子研究[J].生态学报,2021,41(5):1931-1943. |
[23] | 刘小宁,隆瑞红,罗珠珠,等.甘肃省典型土壤持水特性及影响因素研究[J].干旱地区农业研究,2017,35(1):143-151. |
[24] | 周海,郑新军,唐立松,等.准噶尔盆地东南缘多枝柽柳、白刺和红砂水分来源的异同[J].植物生态学报,2013,37(7):665-673. |
[25] | 杨自辉,方峨天,刘虎俊,等.民勤绿洲边缘地下水位变化对植物种群生态位的影响[J].生态学报,2007,27(11):4900-4906. |
[26] | Li F, Zhao W Z, Liu H.The response of aboveground net primary productivity of desert vegetation to rainfall pulse in the temperate desert region of Northwest China[J].Plos One,2013,8(9):e73003. |
[27] | 庄艳丽,赵文智.临泽荒漠绿洲湿地植物生态系列及其物种多样性研究[J].湿地科学,2014,12(4):477-484. |
[28] | 赵文智,常学礼,李启森,等.荒漠绿洲区芦苇种群构件生物量与地下水埋深关系[J].生态学报,2003,23(6):1138-1146. |
[29] | Zeng F, Zhang X, Foetzki A,et al.Water relation characteristics of Alhagi sparsifolia and consequences for a sustainable management[J].Science in China Series D:Earth Sciences,2002,45(1):125-131. |
[1] | Zhixia Guo, Rentao Liu, Wenzhi Zhao. Effect of different precipitation gradients on community characteristics of ground-active arthropods under shrub microhabitats [J]. Journal of Desert Research, 2025, 45(5): 253-265. |
[2] | Weichun Liu, Yulin Li, Li Cheng, Haifu Fang. The impact of protective tillage on wind erosion of farmland in the Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 24-33. |
[3] | Jiaqi Jing, Xinping Liu, Yuhui He, Jie Feng, Hongjiao Hu, Yuanzhi Xu. Responces of plant community construction in semi-arid sandy grassland to precipitation changes [J]. Journal of Desert Research, 2025, 45(4): 314-323. |
[4] | Xinyu Zhao, Yayong Luo, Ruixiang Liu, Ri Xu, Hesong Wang, Nianlai Liang, Yidi Chen. Effects of sand depth and water supply on the emergence and growth of Cenchrus pauciflorus seedlings [J]. Journal of Desert Research, 2025, 45(4): 324-333. |
[5] | Jiaqi Jing, Xinping Liu, Yuhui He, Jie Feng, Hongjiao Hu, Yuanzhi Xu, Yao Zhang. Influence of precipitation on soil enzyme activity in sandy grasslands [J]. Journal of Desert Research, 2025, 45(4): 368-377. |
[6] | Xinping Liu, Hongjiao Hu, Yuhui He, Yuanzhi Xu, Jiaqi Jing, Yao Zhang. Response of key plant populations dynamics to precipitation changes in Horqin Sandy Grassland [J]. Journal of Desert Research, 2025, 45(4): 43-56. |
[7] | Yali Ma, Li Ma, Liping Yang, Siqing Wang, Changming Zhao, Ning Chen. Coexistence patterns of biocrusts and vascular plants in drylands from the perspective of ecohydrology [J]. Journal of Desert Research, 2025, 45(3): 121-130. |
[8] | Yongjie Liu, Heqiang Du, Yawei Fan, Shengfei Yang. Monitoring of wind erosion desertification process in the Mu Us Desert based on Google Earth Engine (GEE) [J]. Journal of Desert Research, 2025, 45(2): 262-274. |
[9] | Fangwei Hao, Zhaobin Song, Xiangyun Li, Ping Yue, Xiaoxue Zhang, Huaihai Wang, Xinghua Zhao, Xiaoan Zuo. Restoring characteristics of plant diversity and productivity in desert steppe after a 5-year precipitation reduction treatment [J]. Journal of Desert Research, 2025, 45(1): 112-120. |
[10] | Rui Zhang, Xueyong Zhao, Gang Li, Yalin Wu, Xinping Liu. Review on responses of grassland plant-soil to precipitation and management measures in arid and semi-arid areas of China [J]. Journal of Desert Research, 2025, 45(1): 131-140. |
[11] | Wenshu Sui, Hao Chen, Fengjun Xiao, Guangyin Hu, Zhibao Dong. Identification characteristics and formation model of fluvial ghost dunes in Hexi Corridor [J]. Journal of Desert Research, 2025, 45(1): 75-84. |
[12] | Jun Li, Fayuan Zhou, Liang Jiao, Kaiming Li, Chaocan Li. Variation of main climatic elements and climate production potential in Hexi Corridor during 1960-2022 [J]. Journal of Desert Research, 2024, 44(6): 14-25. |
[13] | Yu Xing, Benli Liu, Tao Ma, Yimeng Wang. Wind erosion and dust emission in the core area of Hexi Corridor-Taklimakan Desert edge in 2000-2023 [J]. Journal of Desert Research, 2024, 44(6): 330-341. |
[14] | Heng Ren, Wenzhi Zhao, Rong Yang, Zeyu Du. Pathway and countermeasures to improve agricultural water productivity in oasis of Hexi Corridor [J]. Journal of Desert Research, 2024, 44(5): 217-224. |
[15] | Yidan Zhao, Tuo Chen, Yang Liu, Lu Zhang, Yiyang Zhang, Wei Zhang, Gaosen Zhang. Daily variations in chlorophyll fluorescence parameters of hypolithic cyanobacteria in desert region of the Hexi Corridor [J]. Journal of Desert Research, 2024, 44(5): 23-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech