Please wait a minute...
img

官方微信

高级检索
中国沙漠  2018, Vol. 38 Issue (5): 1108-1118    DOI: 10.7522/j.issn.1000-694X.2017.00061
生态与经济     
2000-2015年石羊河流域植被覆盖度及其对气候变化的响应
李丽丽1, 王大为2, 韩涛2
1. 兰州大学 资源环境学院, 甘肃 兰州 730000;
2. 西北区域气候中心, 甘肃 兰州 730020
Spatial-temporal Dynamics of Vegetation Coverage and Responding to Climate Change in Shiyang River Basin during 2000-2015
Li Lili1, Wang Dawei2, Han Tao2
1. College of Earth Environmental Sciences, Lanzhou University, Lanzhou 730000, China;
2. Northwest Regional Climate Center, Lanzhou 730020, China
 全文: PDF 
摘要: 内陆河流域植被覆盖度的敏感性是预测未来生物多样性变化的重要指标,是植被应对气候变暖的重要反馈。分析了2000-2015年MODIS-NDVI数据反演的植被覆盖度时空动态变化趋势,结合平均气温、降水量、日照时数、相对湿度、地面温度和蒸发量数据,研究了流域及各生态功能区的植被覆盖度与气候因子的相关性,探讨植被覆盖度变化过程中的气候因素制约方式,了解不同时空尺度下内陆河流域植被覆盖度在全球暖湿化过程中对气候的响应。结果表明:(1)石羊河流域平均植被覆盖度较低,上游的植被覆盖度59.4%,下游13.6%;2000-2015年,流域植被呈现改善趋势的面积远远大于退化的面积,盆地绿洲区植被覆盖度增加趋势最明显。流域植被总体恢复较好,但高海拔地区、城市和民勤绿洲的周边地区植被有不同程度的退化。(2)2000-2015年,石羊河流域各气候因子对植被覆盖度表现为不显著的相关关系,其中与降水量呈正相关的面积最大,与蒸发量呈负相关的面积最大;从上游到下游,植被生长与热量的相关程度逐渐变弱,与水分的相关程度则逐渐增强。(3)石羊河流域的植被覆盖度与气候因子的样条函数存在极显著的线性相关,水原涵养区和荒漠区的植被覆盖度对气候因子的响应较高;绿洲区的植被覆盖度对气候因子的响应相对较低。地面温度的变化是影响石羊河流域植被覆盖度空间格局变化的主要气候制约因素。
关键词: 植被覆盖度气候因子相关性制约因素石羊河    
Abstract: The sensitivity of vegetation coverage in inland river basin is an important index to predict the change of future biodiversity, as well as a significant feedback of vegetation to global warming. Based on mean temperature, precipitation, sunshine hours, relative humidity, surface temperature and evaporation data, we analysis the correlation between vegetation coverage inversion and climatic factors, discuss the process of climatic factors with the changes of vegetation coverage, and investigate the response of vegetation coverage to climate change in the process of global warming in different spatial and temporal scales. The results show that:(1) the average vegetation coverage was low in Shiyang River Basin,the vegetation coverage in upper reaches was better than in downstream, was 59.4% and 13.6% respectively. The improved vegetation area is far greater than the degraded one and the vegetation coverage in oasis area increased obviously from 2000 to 2015. The overall trend of vegetation restoration was good but the vegetation in high altitude district and the surrounding area of Minqin oasis were degraded with different degree. (2) During 2000-2015, the relation between vegetation and the climatic factors of Shiyang River Basin were not significant. The area with positive correlation with precipitation and the area with negative correlation with evaporation were both the largest. The correlation between vegetation growth and heat gradually weakened at the same time the correlation between vegetation growth and water gradually strengthened. (3) There was a significant linear correlation between spline function and climatic factors of Shiyang River Basin. There is a higher response to climate factors in water conservation and desert area, a lower response in oasis area. The ground temperature is the crucial factor, which would result in the spatial and temporal patterns of vegetation coverage.
Key words: vegetation coverage    climatic factor    correlation    constraints    Shiyang River
收稿日期: 2017-03-17 出版日期: 2018-11-03
ZTFLH:  Q948.1  
基金资助: 甘肃省青-科技基金计划项目(1506RJYA188);甘肃省气象局气象科研项目(GSMAMs2016-18);甘肃省气象局人才专项"石羊河流域综合治理生态效果气象评价";中国气象局风云四号卫星应用示范项目"西北干旱区沙尘监测评估系统"
通讯作者: 王大为(E-mail:giswang@163.com)     E-mail: giswang@163.com
作者简介: 李丽丽(1985-),女,辽宁东港人,博士,主要从事冻土生态学以及遥感应用分析工作。E-mail:lill13@lzu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李丽丽
王大为
韩涛

引用本文:

李丽丽, 王大为, 韩涛. 2000-2015年石羊河流域植被覆盖度及其对气候变化的响应[J]. 中国沙漠, 2018, 38(5): 1108-1118.

Li Lili, Wang Dawei, Han Tao. Spatial-temporal Dynamics of Vegetation Coverage and Responding to Climate Change in Shiyang River Basin during 2000-2015. Journal of Desert Research, 2018, 38(5): 1108-1118.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2017.00061        http://www.desert.ac.cn/CN/Y2018/V38/I5/1108

[1] IPCC.Climate change:the physical science basis[R]//Solomon S,Qin D,Manning M,et al.Contribution of Working Group I to the Fourth Assessment Report of the Iintergovernmental Panel on Climate Change.Cambridge,England:Cambridge University Press,2007.
[2] IPCC.Climate Change 1991:Special Report on Renewable Energy Sources and Climate Change Mitigation[R].Cambridge:Cambridge University Press,1991:365-366.
[3] Climate change 2013:the physical science basis[M/OL].IPCC.http://www.ipcc.ch/report/ar5/wgl/#.Uq_tD7KBRRl.2013.
[4] Parmesan C,Yohe G.A globally coherent fingerprint of climate change impacts across natural systems[J].Nature,2003,421(6918):37-42.
[5] 范月君,侯向阳,石红霄,等.气候变暖对草地生态系统碳循环的影响[J].草业学报,2012,21(3):294-302.
[6] 朴世龙,方精云.1982-1999年我国陆地植被活动对气候变化响应的季节差异[J].地理学报,2003,58(1):119-125.
[7] 宋怡,马明国.基于SPOTVEGETATION数据的中国西北植被覆盖变化分析[J].中国沙漠,2007,27(1):89-93.
[8] Gitelson A A,Kaufman Y J,Stark R,et al.Novel algorithms for remote estimation of vegetation fraction[J].Remote Sensing of Environment,2002,80(1):76-87.
[9] Pan S F,Tian H Q,Shree R S D,et al.Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century[J].Plos One,2014,11(11):1-20.
[10] 车彦军,赵军,张明军,等.不同气候变化情景下2070-2099年中国潜在植被及其敏感性[J].生态学报,2016,36(10):2885-2895.
[11] 陈广生,田汉勤.土地利用/覆盖变化对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):189-204.
[12] Xin Z B,Xu J X,Zheng W.Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981-2006):impacts of climate changes and human activities[J].Science in China Series D:Earth Sciences,2008,51(1):67-78.
[13] Roerink G J,Menenti M,Soepboer W,et al.Assessment of climate impact on vegetation dynamics by using remote sensing[J].Physics and Chemistry of the Earth,Parts A/B/C,2003,28(1):103-109.
[14] Myneni R B,Keeling C D,Tucker C J,et al.Increased plant growth in the northern high latitudes from 1981 to 1991[J].Nature,1997,386(6626):698-702.
[15] Weltzin J F,Loik M E,Schwinning S,et al.Assessing the response of terrestrial ecosystems to potential changes in precipitation[J].Bioscience,2003,53(10):941-952.
[16] Zhou L M,Tucker C J,Kaufmann R K,et al.Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J].Journal of Geophysical Research:Atmospheres (1984-2012) 2001,106(D17):20069-20083.
[17] Shree R S Dangal,Hanqin Tian,Chaoqun Lu,et al.Synergistic effects of climate change and grazing on net primary production of Mongolian grasslands[J].Ecosphere,2016,7(5):DOI:10.1002/ecs2.1274.
[18] Keeling C D,Chin J,Whorf T P.Increased activity of northern vegetation inferred from atmospheric CO2 measurements[J].Nature,1996,382(6587):146-149.
[19] 白淑英,吴奇,史建桥,等.基于时间序列遥感数据的西藏山南地区植被覆盖变化特征分析[J].中国沙漠,2015,35(5):1396-1402.
[20] Zhang J,Zhang Q,Yang L H,et al.Seasonal characters of regional vegetation activity in response to climate change in West China in recent 20 years[J].Journal of Geographical Sciences,2006,16(1):78-86.
[21] Zhou G Y.Principles and Applications of Water and Heat in Ecosystem[M].Beijing:China Meteorological Press,1997.
[22] 孙艳玲,郭鹏,延晓冬,等.内蒙古植被覆盖变化及其与气候,人类活动的关系[J].自然资源学报,2010,25(3):407-414.
[23] 陈燕丽,罗永明,莫伟华,等.MODIS NDVI与MODIS EVI对气候因子响应差异[J].自然资源学报,2014,29(10):1802-1812.
[24] 赵茂盛,符淙斌,延晓冬,等.应用遥感数据研究中国植被生态系统与气候的关系[J].地理学报,2001,56(3):287-296.
[25] Sun J,Cheng G W,Li W P,et al.On the variation of NDVI with the principal climatic elements in the Tibetan Plateau[J].Remote Sensing,2013,5(4):1894-1911.
[26] Myneni R B,Keeling C D,Tucker C J,et al.Increased plant growth in the northern high latitudes from 1981 to 1991[J].Nature,1997,386(6626):698-702.
[27] 陈亚宁,李稚,范煜婷,等.西北干旱区气候变化对水文水资源影响研究进展[J].地理学报,2014,69(9):1295-1304.
[28] 冯起,李宗礼,高前兆,等.石羊河流域民勤绿洲生态需水与生态建设[J].地球科学进展,2012,27(7):806-814.
[29] 孙杨,张雪芹,郑度.气候变暖对西北干旱区农业气候资源的影响[J].自然资源学报,2010,25(7):1153-1162.
[30] 姚玉璧,李耀辉,石界,等.基于GIS的石羊河流域干旱灾害风险评估与区划[J].干旱地区农业研究,2014,32(2):21-28.
[31] 周俊菊,雷莉,石培基,等.石羊河流域河川径流对气候与土地利用变化的响应[J].生态学报,2015,35(11):1-13.
[32] Xiao J,Aaron M.A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico,USA[J].Remote Sensing of Environment,2005,98:237-250.
[33] 祁永安,李吉均,张建明,等.石羊河流域生态功能区研究[J].兰州大学学报:自然科学版,2006,42(4):29-33.
[34] Gutman G,Ignatov A.The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J].International Journal of Remote Sensing,1998,19(8):1533-1543.
[35] 周伟,刚成诚,李建龙,等.1982-2010年中国草地覆盖度的时空动态及其对气候变化的响应[J].地理学报,2014,69(1):15-30.
[36] 穆少杰,李建龙,陈奕兆,等.2001-2010年内蒙古植被覆盖度时空变化特征[J].地理学报,2012,67(9):1255-1268.
[37] 李丽丽,赵成章,殷翠琴,等.GAM模型在蝗虫地理格局分布研究中的应用——以黑河上游3种天然草地蝗虫为例[J].中国沙漠,2013,33(4):1071-1077.
[38] 樊胜岳,马永欢,周立华.甘肃民勤绿洲近年来生态治理政策在农户中的响应[J].中国沙漠,2005,25(3):397-403.
[39] 李传华,赵军.基于GIS的民勤县生态环境脆弱性演化研究[J].中国沙漠,2013,33(1):302-307.
[40] 王根绪,程国栋,沈永平,等.土地覆盖变化对高山草甸土壤特性的影响[J].科学通报,2002,47(23):1771-1777.
[41] 孙丹峰,李红.民勤绿洲荒漠化遥感评价研究[J].中国沙漠,2002,18(6):176-181.
[42] 孟敏.民勤绿洲生态脆弱性评价与环境变化公众理解探讨[D].兰州:兰州大学,2011.
[1] 郭紫晨, 刘树林, 康文平, 陈翔, 张雪琴. 2000-2015年毛乌素沙区植被覆盖度变化趋势[J]. 中国沙漠, 2018, 38(5): 1099-1107.
[2] 马俊梅, 满多清, 李得禄, 刘有军, 郭春秀. 干旱荒漠区退耕地植被演替及土壤水分变化[J]. 中国沙漠, 2018, 38(4): 800-807.
[3] 曹博, 张勃, 马彬, 王国强, 唐敏, 张耀宗, 贾艳青. 2000-2014年甘肃省NDVI时空变化特征[J]. 中国沙漠, 2018, 38(2): 418-427.
[4] 牛清河, 屈建军, 安志山. 甘肃敦煌雅丹地质公园区风蚀气候侵蚀力特征[J]. 中国沙漠, 2017, 37(6): 1066-1070.
[5] 黄兵兵, 赵力强, 程弘毅, 梁晓燕, 王乃昂. 巴丹吉林沙漠腹地地温变化特征[J]. 中国沙漠, 2017, 37(3): 530-535.
[6] 安志山, 张克存, 谭立海, 蔡迪文. 晴天和沙尘天气下沙漠绿洲过渡带近地表风速脉动特征[J]. 中国沙漠, 2017, 37(3): 414-420.
[7] 乔蕻强, 程文仕, 乔伟栋, 刘学录. 基于相对风险模型的土地利用变化生态风险定量评价——以石羊河流域为例[J]. 中国沙漠, 2017, 37(1): 198-204.
[8] 吴燕锋, 巴特尔·巴克, 罗那那. 1961-2012年北疆干旱时空变化[J]. 中国沙漠, 2017, 37(1): 158-166.
[9] 陈新闯, 董智, 李锦荣, 李红丽, 郭建英, 贾淑友, 代豫杰. 乌兰布和沙漠不同下垫面冬季沙尘通量[J]. 中国沙漠, 2016, 36(6): 1527-1532.
[10] 郭辉, 黄粤, 李向义, 包安明, 宋洋, 孟凡浩. 基于多尺度遥感数据的塔里木河干流地区植被覆盖动态[J]. 中国沙漠, 2016, 36(5): 1472-1480.
[11] 冯筱, 李生宇, 徐新文, 马学喜, 邢文娟, 袁鑫鑫. 策勒绿洲-沙漠过渡带骆驼刺(Alhagi sparsifolia)群落的地表蚀积特征[J]. 中国沙漠, 2016, 36(5): 1252-1259.
[12] 雒丽, 赵雪雁, 王亚茹, 张钦. 石羊河流域农户对气候变化的感知及其影响因素[J]. 中国沙漠, 2016, 36(4): 1171-1181.
[13] 尚海洋, 丁杨, 张志强. 补偿标准参照的比较:机会成本与环境收益——以石羊河流域生态补偿为例[J]. 中国沙漠, 2016, 36(3): 830-835.
[14] 张钦, 赵雪雁, 王亚茹, 雒丽. 气候变化对石羊河流域农户生计资本的影响[J]. 中国沙漠, 2016, 36(3): 814-822.
[15] 张莹花, 刘世增, 纪永福, 刘虎俊, 李发明, 李银科. 石羊河中游河岸芦苇(Phragmites australis)群落空间格局[J]. 中国沙漠, 2016, 36(2): 342-348.