中国沙漠 ›› 2019, Vol. 39 ›› Issue (2): 1-12.DOI: 10.7522/j.issn.1000-694X.2018.00029
刘少芳1,2, 王若愚1
收稿日期:
2018-01-17
修回日期:
2018-03-20
发布日期:
2019-04-11
通讯作者:
王若愚(E-mail:wangruoyu@lzb.ac.cn)
作者简介:
刘少芳(1988-),女,河南濮阳人,博士研究生,主要从事芽孢杆菌诱导植物耐盐分子机理研究。E-mail:liushaofanghnpy@163.com
基金资助:
Liu Shaofang1,2, Wang Ruoyu1
Received:
2018-01-17
Revised:
2018-03-20
Published:
2019-04-11
摘要: 土壤盐分过高抑制植物生长,已成为盐碱地区域农业发展的主要限制因素。植物根际促生细菌(Plant growth-promoting rhizobacteria,PGPR)促进盐碱地作物生长,增强作物耐盐能力,进而诱导作物盐耐受性。对能诱导植物盐耐受性的PGPR种类作了总结,并从PGPR自身产生物质及植物受到PGPR作用后生理变化两个方面评述PGPR提高植物耐盐性的机制。了解PGPR提高植物耐盐性的机理,为大规模利用微生物提高作物在盐碱等条件下的稳产高产提供理论依据。
中图分类号:
刘少芳, 王若愚. 植物根际促生细菌提高植物耐盐性研究进展[J]. 中国沙漠, 2019, 39(2): 1-12.
Liu Shaofang, Wang Ruoyu. Advance in Research onPlant Salt Tolerance Improved by Plant-growth-promoting Rhizobacteria[J]. Journal of Desert Research, 2019, 39(2): 1-12.
[1] Flowers T J.Breeding for salinity resistance in crop plants:where next?[J].Australian Journal of Plant Physiology,1995,22(6):875-884. [2] 赵可夫,李法曾,樊守金,等.中国的盐生植物[J].植物学报,1999,16(3):201-207. [3] Meloni D A,Oliva M A,Martinez C A,et al.Photosynthesis and activity of superoxide dismutase,peroxidase and glutathione reductase in cotton under salt stress[J].Environnental and Experimental Botany,2003,49(1):69-76. [4] Deinlein U,Stephan A B,Horie T,et al.Plant salt-tolerance mechanisms[J].Trends in Plant Science,2014,19(6):371-379. [5] Qian Q.Genetics and molecular breeding for salt-tolerance in rice[J].Rice Genomics and Genetics,2012,3(1):56-64. [6] Sergeeva E,Shah S,Glick B R.Tolerance of transgenic canola expressing a bacterial ACC deaminase gene to high concentrations of salt[J].World Journal of Microbiology and Biotechnology,2006,22:77-282. [7] Mayak S,Tirosh T,Glick B R.Plant growth-promoting bacteria confer resistance in tomato plants to salt stress[J].Plant Physiology and Biochemistry,2004,42(6):565-572. [8] Gamalero E,Berta G,Massa N,et al.Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions[J].Journal of Applied Microbiology,2010,108(1):236-245. [9] Lugtenberg B,Kamilova F.Plant-growth-promoting rhizobacteria[J].Annual Review of Microbiology,2009,63:541-556. [10] Vessey J K.Plant growth promoting rhizobacteria as biofertilizers[J].Plant and Soil,2003,255(2):571-586. [11] Van Loon L C.Plant responses to plant growth-promoting rhizobacteria[J].European Journal of Plant Pathology,2007,119(3):243-254. [12] Lucy M,Reed E,Glick B R.Applications of free living plant growth-promoting rhizobacteria[J].Antonie van Leeuwenhoek,2004,86(1):1-25. [13] Chen W,Zhao Z,Chen S F,et al.Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro[J].Bioresource Technology,2008,99(8):3187-3194. [14] Kloepper J W,Ryu C M,Zhang S.Induced systemic resistance and promotion of plant growth by Bacillus spp[J].Phytopathology,2004,94(11):1259-1266. [15] Van Loon L C,Bakker P,Pieterse C M J.Systemic resistance induced by rhizosphere bacteria[J].Annual Review of Phytopathology,1998,36(1):453-483. [16] Paul D,Lade H.Plant-growth-promoting rhizobacteria to improve crop growth in saline soils:a review[J].Agronomy for Sustainable Development,2014,34(4):737-752. [17] Dimkpa C,Weinand T,Asch F.Plant-rhizobacteria interactions alleviate abiotic stress conditions[J].Plant,Cell & Environment,2009,32(12):1682-1694. [18] Han Q Q,Wu Y N,Gao H J,et al.Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03[J].Acta Physiologiae Plantarum,2017,39(1):35. [19] Liu S,Hao H,Lu X,et al.Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana[J].Scientific Reports,2017,7(1):10795. [20] Chen L,Liu Y,Wu G,et al.Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9[J].Physiologia Plantarum,2016,158(1):34-44. [21] Chen L,Liu Y,Wu G,et al.Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 induces plant salt tolerance through spermidine production[J].Molecular Plant-Microbe Interactions,2017,30(5):423-432. [22] Fan P,Chen D,He Y,et al.Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands[J].International Journal of Phytoremediation,2016,18(11):1113-1121. [23] Niu S Q,Li H R,Paré P W,et al.Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria[J].Plant and Soil,2016,407(1/2):217-230. [24] Bharti N,Barnawal D,Awasthi A,et al.Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth,oil content and physiological status in Mentha arvensis[J].Acta Physiologiae Plantarum,2014,36(1):45-60. [25] Han Q Q,Lü X P,Bai J P,et al.Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover[J].Frontiers in Plant Science,2014,5:525. [26] 韩庆庆,贾婷婷,吕昕培,等.枯草芽孢杆菌GB03对紫花苜蓿耐盐性的影响[J].植物生理学报,2014,50(9):1423-1428. [27] Nautiyal C S,Srivastava S,Chauhan P S,et al.Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress[J].Plant Physiology and Biochemistry,2013,66:1-9. [28] Bal H B,Nayak L,Das S,et al.Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress[J].Plant and Soil,2013,366(1/2):93-105. [29] Jha Y,Subramanian R B.Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition[J].Chilean Journal of Agricultural Research,2013,73(3):213-219. [30] 罗欢,伍辉军,谢永丽,等.巨大芽胞杆菌CJLC2菌株对盐胁迫下番茄生长及耐盐生理生化指标的影响[J].植物保护学报,2013,40(5):431-436. [31] Shen M,Kang Y J,Wang H L,et al.Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth,yield,and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation[J].The Journal of General and Applied Microbiology,2012,58(4):253-262. [32] Upadhyay S K,Singh J S,Saxena A K,et al.Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions[J].Plant Biology,2012,14(4):605-611. [33] Nadeem S M,Shaharoona B,Arshad M,et al.Population density and functional diversity of plant growth promoting rhizobacteria associated with avocado trees in saline soils[J].Applied Soil Ecology,2012,62:147-154. [34] Upadhyay S K,Singh J S,Singh D P.Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition[J].Pedosphere,2011,21(2):214-222. [35] Marulanda A,Azcón R,Chaumont F,et al.Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions[J].Planta,2010,232(2):533-543. [36] Kaymak H Ç,Güvenç I,Yarali F,et al.The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions[J].Turkish Journal of Agriculture and Forestry,2009,33(2):173-179. [37] 郭英,刘栋,赵蕾.生防枯草芽孢杆菌胞外植酸酶对小麦耐盐性的影响[J].应用与环境生物学报,2009,15(1):39-43. [38] Zhang H,Kim M S,Sun Y,et al.Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J].Molecular Plant-Microbe Interactions,2008,21(6):737-744. [39] Barriuso J,Solano B R,Gutiérrez Mañero F J.Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp.on Arabidopsis thaliana[J].Phytopathology,2008,98(6):666-672. [40] Príncipe A,Alvarez F,Castro M G,et al.Biocontrol and PGPR features in native strains isolated from saline soils of Argentina[J].Current Microbiology,2007,55(4):314-322. [41] 尹汉文,郭世荣,刘伟,等.枯草芽孢杆菌对黄瓜耐盐性的影响[J].南京农业大学学报,2006,29(3):18-22. [42] Ashraf M,Hasnain S,Berge O,et al.Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress[J].Biology and Fertility of Soils,2004,40(3):157-162. [43] Kumari S,Vaishnav A,Jain S,et al.Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L.Merrill)[J].Journal of Plant Growth Regulation,2015,34(3):558-573. [44] He Y,Wu Z,Tu L,et al.Effect of encapsulated pseudomonas putida Rs-198 strain on alleviating salt stress of cotton[J].Journal of Plant Nutrition,2017,40(8):1180-1189. [45] Chatterjee P,Samaddar S,Anandham R,et al.Beneficial soil bacterium Pseudomonas frederiksbergensis OS261 augments salt tolerance and promotes red pepper plant growth[J].Frontiers in Plant Science,2017,8:705. [46] Zerrouk I Z,Benchabane M,Khelifi L,et al.A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress[J].Journal of Plant Physiology,2016,191:111-119. [47] Egamberdieva D,Jabborova D,Hashem A.Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid[J].Saudi Journal of Biological Sciences,2015,22(6):773-779. [48] Han Y,Wang R,Yang Z,et al.1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals[J].J.Microbiol.Biotechnol,2015,25(7):1119-1128. [49] Nadeem S M,Zahir Z A,Naveed M,et al.Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions[J].Annals of Microbiology,2013,63(1):225-232. [50] Patel D,Jha C K,Tank N,et al.Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria[J].Journal of Plant Growth Regulation,2012,31(1):53-62. [51] Egamberdieva D.Survival of Pseudomonas extremorientalis TSAU20 and P.chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions[J].Plant Soil Environ,2011,57(3):122-127. [52] Fu Q,Liu C,Ding N,et al.Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp.DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress[J].Agricultural Water Management,2010,97(12):1994-2000. [53] Tank N,Saraf M.Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants[J].Journal of Plant Interactions,2010,5(1):51-58. [54] Yao L,Wu Z,Zheng Y,et al.Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton[J].European Journal of Soil Biology,2010,46(1):49-54. [55] Kohler J,Hernández J A,Caravaca F,et al.Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress[J].Environmental and Experimental Botany,2009,65(2):245-252. [56] Nadeem S M,Zahir Z A,Naveed M,et al.Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity[J].Canadian Journal of Microbiology,2007,53(10):1141-1149. [57] Saravanakumar D,Samiyappan R.ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants[J].Journal of Applied Microbiology,2007,102(5):1283-1292. [58] Paul D,Sarma Y R.Antagonistic effects of metabolites of Pseudomonas fluorescens strains on the different growth phases of Phytophthora capsici,foot rot pathogen of black pepper (Piper nigrum L.)[J].Archives of Phytopathology and Plant Protection,2006,39(2):113-118. [59] Malik K A,Bilal R,Mehnaz S,et al.Association of nitrogen-fixing,plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice[J].Plant and Soil,1997,194(1/2):37-44. [60] Khalid M,Bilal M,Hassani D,et al.Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect[J].Botanical Studies,2017,58(1):5. [61] Mazhar R,Ilyas N,Saeed M,et al.Biocontrol and salinity tolerance potential of Azospirillum lipoferum and its inoculation Effect in wheat crop[J].International Journal of Agriculture & Biology,2016,18(3):494-500. [62] Gonzalez A J,Larraburu E E,Llorente B E.Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting[J].Industrial Crops and Products,2015,76:41-48. [63] Nia S H,Zarea M J,Rejali F,et al.Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil[J].Journal of the Saudi Society of Agricultural Sciences,2012,11(2):113-121. [64] Nabti E,Sahnoune M,Ghoul M,et al.Restoration of growth of durum wheat (Triticum durum var.waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca[J].Journal of Plant Growth Regulation,2010,29(1):6-22. [65] Dardanelli M S,de Cordoba F J F,Espuny M R,et al.Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress[J].Soil Biology and Biochemistry,2008,40(11):2713-2721. [66] Barassi C A,Ayrault G,Creus C M,et al.Seed inoculation with Azospirillum mitigates NaCl effects on lettuce[J].Scientia Horticulturae,2006,109(1):8-14. [67] Hamdia M A E S,Shaddad M A K,Doaa M M.Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions[J].Plant Growth Regulation,2004,44(2):165-174. [68] Hamaoui B,Abbadi J,Burdman S,et al.Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions[J].Agronomie,2001,21(6/7):553-560. [69] Omar M N A,Osman M E H,Kasim W A,et al.Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense[M]//Achraf M,Ozturk M,Athar H R.Salinity and Water Stress.Netherlands:Springer,2009:133-147. [70] Li H,Lei P,Pang X,et al.Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4[J].Applied Soil Ecology,2017,119:26-34. [71] Singh R P,Runthala A,Khan S,et al.Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8[J].PloS One,2017,12(9):e0183513. [72] Bhise K K,Bhagwat P K,Dandge P B.Plant Growth-promoting characteristics of salt tolerant Enterobacter cloacae Strain KBPD and its efficacy in Amelioration of salt stress in Vigna radiata L[J].Journal of Plant Growth Regulation,2017,36(1):215-226. [73] Singh R P,Jha P N.Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp.SBP-6 isolated from Sorghum bicolor[J].Acta Physiologiae Plantarum,2016,38(5):110. [74] Kang S M,Radhakrishnan R,Lee S M,et al.Enterobacter sp.SE992-induced regulation of amino acids,sugars,and hormones in cucumber plants improves salt tolerance[J].Acta Physiologiae Plantarum,2015,37(8):149. [75] Kim K,Jang Y J,Lee S M,et al.Alleviation of salt stress by Enterobacter sp.EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants[J].Molecules and Cells,2014,37(2):109-117. [76] Chakraborty U,Chakraborty B N,Chakraborty A P,et al.Water and salt stress alleviation in wheat induced by rhizosphere bacteria with multi-functional traits[J].International Journal of Bio-resource and Stress Management,2013,4(2):214-219. [77] Pinedo I,Ledger T,Greve M,et al.Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance[J].Frontiers in Plant Science,2015,(6):466. [78] Bano D A,Singh R K,Waza S A,et al.Effect of cowpea Bradyrhizobium (RA-5) and Burkholderia cepacia (RRE-5) on growth parameters of pigeonpea under salt stress conditions[J].Journal of Pure and Applied Microbiology,2015,9(3):2539-2546. [79] Singh R P,Jha P N.Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp.SL-12 isolated from a salt lake[J].Symbiosis,2016,69(2):101-111. [80] Bhattacharyya D,Lee Y H.A cocktail of volatile compounds emitted from Alcaligenes faecalis JBCS1294 induces salt tolerance in Arabidopsis thaliana by modulating hormonal pathways and ion transporters[J].Journal of Plant Physiology,2017,214:64-73. [81] Bhattacharyya D,Yu S M,Lee Y H.Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues[J].Plant Growth Regulation,2015,75(1):297-306. [82] Barnawal D,Bharti N,Pandey S S,et al.Plant growth promoting rhizobacteria enhances wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression[J].Physiologia Plantarum,2017,161:12164. [83] Sadeghi A,Karimi E,Dahaji P A,et al.Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions[J].World Journal of Microbiology and Biotechnology,2012,28(4):1503-1509. [84] Yousefi S,Kartoolinejad D,Bahmani M,et al.Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of hopbush shrub (Dodonaea viscosa L.) under salinity stress[J].Journal of Sustainable Forestry,2017,36(2):107-120. [85] Rojas-Tapias D,Moreno-Galván A,Pardo-Díaz S,et al.Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays)[J].Applied Soil Ecology,2012,61:264-272. [86] Barnawal D,Bharti N,Tripathi A,et al.ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation[J].Journal of Plant Growth Regulation,2016,35(2):553-564. [87] Shukla P S,Agarwal P K,Jha B.Improved salinity tolerance of Arachishypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria[J].Journal of Plant Growth Regulation,2012,31(2):195-206. [88] Sikdar S U,Zobayer N,Nasrin S,et al.Agrobacterium-mediated PsCBL and PsCIPK gene transformation to enhance salt tolerance in indica rice (Oryza sativa)[J].In Vitro Cellular & Developmental Biology-Plant,2015,51(2):143-151. [89] Akram M S,Shahid M,Tariq M,et al.Deciphering Staphylococcus sciuri SAT-17 mediated anti-oxidative defense mechanisms and growth modulations in salt stressed maize (Zea mays L.)[J].Frontiers in Microbiology,2016,7:867. [90] Shukla P S,Agarwal P K,Jha B.Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria[J].Journal of Plant Growth Regulation,2012,31(2):195-206. [91] Liu S,Hao H,Lu X,et al.Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana[J].Scientific Reports,2017,7(1):10795. [92] Kausar R,Shahzad S M,Arshad M,et al.Screening and evaluation of rhizobacteria containing ACC-deaminase for growth promotion of wheat (Triticum aestivum L.) under salinity stress[J].Journal of Agricultural Research,2009,47(3):369-375. [93] Wu Z,Yue H,Lu J,et al.Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress[J].World Journal of Microbiology and Biotechnology,2012,28(6):2383-2393. [94] Akhtar S S,Andersen M N,Liu F.Residual effects of biochar on improving growth,physiology and yield of wheat under salt stress[J].Agricultural Water Management,2015,158:61-68. [95] Tao Z,Kou Y,Liu H,et al.OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J].Journal of Experimental Botany,2011,62(14):4863-4874. [96] Shinozaki K,Yamaguchi-Shinozaki K.Gene expression and signal transduction in water-stress response[J].Plant Physiology,1997,115(2):327. [97] Cho S M,Kang B R,Kim J J,et al.Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure[J].The Plant Pathology Journal,2012,28(2):202-206. [98] Xiong L,Schumaker K S,Zhu J K.Cell signaling during cold,drought,and salt stress[J].The Plant Cell,2002,14(Suppl.1):165-183. [99] Spychalla J P,Desborough S L.Superoxide dismutase,catalase,and α-tocopherol content of stored potato tubers[J].Plant Physiology,1990,94(3):1214-1218. [100] Yancy P H,Clack M E,Hand S C,et al.Living with water stress:evolution of osmolyte systems[J].Science,1982,217:1214-1222. [101] 许兴,李树华,惠红霞,等.NaCl胁迫对小麦幼苗生长,叶绿素含量及Na+,K+吸收的影响[J].西北植物学报,2002,22(2):278-284. [102] Ashraf M,Foolad M R.Roles of glycine betaine and proline in improving plant abiotic stress resistance[J].Environmental and Experimental Botany,2007,59(2):206-216. [103] Claussen W.Proline as a measure of stress in tomato plants[J].Plant Science,2005,168(1):241-248. [104] Han H S,Lee K D.Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions[J].Research Journal of Agriculture and Biological Sciences,2005,1(3):216-221. [105] Zarea M J,Hajinia S,Karimi N,et al.Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl[J].Soil Biology and Biochemistry,2012,45:139-146. [106] Casanovas E M,Barassi C A,Andrade F H,et al.Azospirillum-inoculated maize plant responses to irrigation restraints imposed during flowering[J].Cereal Research Communications,2003:395-402. [107] Yoshiba Y,Kiyosue T,Nakashima K,et al.Regulation of levels of proline as an osmolyte in plants under water stress[J].Plant and Cell Physiology,1997,38(10):1095-1102. [108] Branda S S,Chu F,Kearns D B,et al.A major protein component of the Bacillus subtilis biofilm matrix[J].Molecular Microbiology,2006,59(4):1229-1238. [109] Geddie J L,Sutherland I W.Uptake of metals by bacterial polysaccharides[J].Journal of Applied Microbiology,1993,74(4):467-472. [110] Ashraf M,Hasnain S,Berge O.Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil[J].International Journal of Environmental Science & Technology,2006,3(1):43-51. [111] Ferreira R G,Távora F J A F,Ferreyra Hernandez F F.Dry matter partitioning and mineral composition of roots,stems and leaves of guava grown under salt stress conditions[J].Pesquisa Agropecuária Brasileira,2001,36(1):79-88. [112] Aziz I,Khan M A.Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta,Pakistan[J].Aquatic Botany,2001,70(3):259-268. [113] Parida A K,Das A B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology and Environmental Safety,2005,60(3):324-349. [114] 束胜,郭世荣,孙锦,等.盐胁迫下植物光合作用的研究进展[J].中国蔬菜,2012(9):53-61. [115] Ahmadi J,Asgharzadeh A,Bakhtiari S.The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress[J].International Journal of Advanced Biological and Biomedical Research,2013,1(4):421-431. [116] Mayak S,Tirosh T,Glick B R.Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers[J].Plant Science,2004,166(2):525-530. [117] Ghaffari M R,Ghabooli M,Khatabi B,et al.Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley[J].Plant Molecular Biology,2016,90(6):699-717. [118] 冯福应,刘发来,李蘅,等.浑善达克沙漠褐沙蒿根际细菌组成及其季节性变化[J].内蒙古农业大学学报(自然科学版),2011,32(1):157-161. [119] 代金霞,周波,田平雅.荒漠植物柠条产ACC脱氨酶根际促生菌的筛选及其促生特性研究[J].生态环境学报,2017,26(3):386-391. |
[1] | 何远政, 黄文达, 赵昕, 吕朋, 王怀海. 气候变化对植物多样性的影响研究综述[J]. 中国沙漠, 2021, 41(1): 59-66. |
[2] | 韩庆杰, 郝才元, 屈建军, 张宏杰, 周福成. 临哈铁路典型路段风沙防治工程的三维气流场特征与防沙效率[J]. 中国沙漠, 2020, 40(6): 1-12. |
[3] | 苏天燕, 刘文杰, 杨秋, 毛伟. 土壤碳循环对地下水位的响应研究进展[J]. 中国沙漠, 2020, 40(5): 180-189. |
[4] | 巩炜, 胡广录, 付鹏程, 李浩然, 周川, 邓丽媛. 干旱区沙漠-绿洲过渡带固沙植物的土壤水分入渗特征[J]. 中国沙漠, 2020, 40(5): 200-208. |
[5] | 张彩霞, 娄俊鹏, 蔡迪文. 荒漠地区15种植物的元素含量[J]. 中国沙漠, 2020, 40(4): 18-23. |
[6] | 苏郎嘎, 田桂泉, 红霞. 浑善达克沙地苔藓物种多样性[J]. 中国沙漠, 2020, 40(3): 51-59. |
[7] | 冯筱, 屈建军, 范庆斌, 谭立海. 鼠兔(Ochotona curzoniae)洞穴堆积体对草地沙化的影响及防治[J]. 中国沙漠, 2020, 40(3): 168-176. |
[8] | 杨利贞, 冯丽, 杨贵森, 黄磊. 柠条(Caragana korshinskii)、油蒿(Artemisia ordosica)、花棒(Hedysarum scoparium)叶片吸水潜力及影响因素[J]. 中国沙漠, 2020, 40(2): 214-221. |
[9] | 李香云, 岳平, 郭新新, 张蕊, 赵生龙, 张森溪, 王少昆, 左小安. 荒漠草原植物群落光合速率对水氮添加的响应[J]. 中国沙漠, 2020, 40(1): 116-124. |
[10] | 张瑞, 周晓兵, 张元明. 生物土壤结皮对温带荒漠植物凋落物分解的影响[J]. 中国沙漠, 2019, 39(6): 151-158. |
[11] | 陈娟丽, 赵学勇, 刘新平, 张雅秋, 罗永清, 张蕊, 张润霞, 于海伦. 降雨量对科尔沁沙地3种沙生植物生长和生理的影响[J]. 中国沙漠, 2019, 39(5): 163-173. |
[12] | 任珺, 孙梦洁, 张照桤, 陶玲. 外源钙对盐胁迫下苦豆子(Sophora alopecuroides)种子萌发和幼苗生长的影响[J]. 中国沙漠, 2019, 39(1): 105-109. |
[13] | 王晓光, 乌云娜, 霍光伟, 宋彦涛, 张凤杰. 放牧对呼伦贝尔典型草原植物生物量分配及土壤养分含量的影响[J]. 中国沙漠, 2018, 38(6): 1230-1236. |
[14] | 姚广前, 魏阳, 毕敏慧, 聂争飞, 方向文. 干旱胁迫下4种锦鸡儿属植物叶脉密度与最低水势关系[J]. 中国沙漠, 2018, 38(6): 1252-1258. |
[15] | 韩致文, 郭彩贇, 钟帅, 李爱敏. 库布齐沙漠HDPE网和植物纤维网沙障防沙试验效应[J]. 中国沙漠, 2018, 38(4): 681-689. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn