Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2013, Vol. 33 Issue (3): 737-742    DOI: 10.7522/j.issn.1000-694X.2013.00106
Biology and Soil     
The Relationships between Spectral Features and Water Content of the Dominant Plant Species in the Tengger Desert
WANG Peng-long, ZHANG Jian-ming, ZHANG Chun-mei, XU Ming-shan, WANG Lei
College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Download:  PDF (1892KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The spectral features of ground objects are not just the significant content of mechanism research of remote sensing, but also the important basis of remote sensing application. In this paper, the canopy hyperspectral data of ten plants in the Tengger Desert were measured in-situ with a Fieldspec HandHeld spectroradiometer, and water content of the corresponding plants was measured in lab. The canopy hyperspectral data were processed in continuum removal and first derivative methods, the relationship between the water content of plants and continuum removal reflectance spectrum was analyzed by correlation coefficient method and characteristics of the red edge was analyzed at the same time. The results showed that the water content of main plants ranged from 37.34% to 88.19%; Significant correlation was found between water content and normalized reflectance spectrum in visible (561-718 nm) and near-infrared (861 nm, 894 nm) bands, and the linear regression model was built, which indicated that visible and near-infrared reflectance could reflect water content of desert plants; The characteristics of the red edge of desert plants with different water content vary.

Key words:  spectral features      continuum removal      first derivative      water content      Tengger Desert     
Received:  21 September 2012      Published:  27 December 2012
ZTFLH:  Q948.15+1  

Cite this article: 

WANG Peng-long, ZHANG Jian-ming, ZHANG Chun-mei, XU Ming-shan, WANG Lei. The Relationships between Spectral Features and Water Content of the Dominant Plant Species in the Tengger Desert. JOURNAL OF DESERT RESEARCH, 2013, 33(3): 737-742.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00106     OR     http://www.desert.ac.cn/EN/Y2013/V33/I3/737

[1]赵景波,郁科科,邵天杰,等.腾格里沙漠沙层水分状况初步研究[J].资源科学,2011,33(2):259-264.

[2]陈荷生,康跃虎.腾格里沙漠沙坡头地区植物生长与水分平衡的初步研究[J].中国沙漠,1991,11(2):1-10.

[3]吉小敏,宁虎森,梁继业,等.不同水分条件下梭梭和多花柽柳苗期光合特性及抗旱性比较[J].中国沙漠,2012,32(2):399-406.

[4]周生荟,刘玉冰,谭会娟,等.荒漠植物红砂在持续干旱胁迫下的光保护机制研究[J].中国沙漠,2010,30(1):69-73.

[5]伏玉玲,于贵瑞,王艳芬,等.水分胁迫对内蒙古羊草草原生态系统光合和呼吸作用的影响[J].中国科学(D 辑:地球科学),2006,36(增刊):183-193.

[6]刘长利,王文全,崔俊茹,等.干旱胁迫对甘草光合特性与生物量分配的影响[J].中国沙漠,2006,26(1):142-145.

[7]刘国军,张希明,吕朝燕,等.不同供水条件下梭梭幼苗生长动态的研究[J].中国沙漠,2012,32(2):388-394.

[8]田魏龙,蒋志荣.不同沙棘品种对干旱胁迫的生理生化响应[J].中国沙漠,2011,31(5):1215-1220.

[9]田庆久,宫鹏,赵春江,等.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(24):2645-2650.

[10]田永超,朱艳,曹卫星,等.小麦冠层反射光谱与植株水分状况的关系[J].应用生态学报,2004,15(11):2072-2076.

[11]童庆禧,张兵,郑芬兰.高光谱遥感——原理、技术与应用[M].北京:高等教育出版社,2006:374-375.

[12]王树东,刘素红,丁建丽,等.叶片水分含量光谱响应变化研究[J].干旱区地理,2006,29(4):510-516.

[13]王涛.中国沙漠与沙漠化[M].石家庄:河北科学技术出版社,2003:602-606.

[14]Kokaly R F,Clark R N.Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J].Remote Sensing of Environment,1999,67(3):267-287.

[15]Schmidt K,Skidmore A.Spectral discrimination of vegetation types in a coastal wetland[J].Remote Sensing of Environment,2003,85(1):92-108.

[16]徐元进,胡光道,张振飞.包络线消除法及其在野外光谱分类中的应用[J].地理与地理信息科学,2005,21(6):11-14.

[17]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.

[18]严子柱,刘世增,严子仁.野生蔬菜沙葱的人工栽培技术[J].甘肃农业科技,2005,(7):33-34.

[19]张春梅,张建明.基于高光谱影像的干旱区草地光谱特征分析[J].光谱学与光谱分析,2012,32(2):445-448.

[20]贾海峰,刘雪华.环境遥感原理与应用[M].北京:清华大学出版社,2006:169-173.

[21]张佳华,许云,姚凤梅,等.植被含水量光学遥感估算方法研究进展[J].中国科学:技术科学,2010,40(10):1121-1129.

[22]田国良,郭世忠.水稻的光谱反射特性[J].自然资源,1982,(2):73-82.

[23]林文鹏,李厚增,黄敬峰,等.上海城市植被光谱反射特征分析[J].光谱学与光谱分析,2010,(11):3111-3114.

[24]Filella I,Penuelas J.The red edge position and shape as indicators of plant chlorophyll content,biomass and hydric status[J].International Journal of Remote Sensing,1994,15(7):1459-1470.

[25]Pu R,Gong P,Biging G S,et al.Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(4):916-921.

[26]Ju C H,Tian Y C,Yao X,et al.Estimating leaf chlorophyll content using red edge parameters[J].Pedosphere,2010,20(5):633-644.

[27]Curran P J,Dungan J L,Gholz H L.Exploring the relationship between reflectance red edge and chlorophyll content in slash pine[J].Tree Physiology.1990,7(15):203-206.

[28]Brantley S T,Zinnert J C,Young D R.Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies[J].Remote Sensing of Environment,2010,115:514-523.

[29]Niemann K O.Remote sensing of fores stand age using airborne spectrometer data[J].Photogrammetric Engineering and Remote Sensing,1995,61(9):1119-1127.

[30]杜华强,金伟,葛宏立,等.用高光谱曲线分形维数分析植被健康状况[J].光谱学与光谱分析,2009,(8):2136-2140.

[31]Clevers J,Kooistra L,Salas E.Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data[J].International Journal of Remote Sensing,2004,25(19):3883-3895.

[32]Kodani E,Awaya Y,Tanaka K,et al.Seasonal patterns of canopy structure,biochemistry and spectral reflectance in a broad-leaved deciduous Fagus crenata canopy[J].Forest Ecology and Management,2002,167(1/3):233-249.

[33]万余庆,谭克龙,周日平.高光谱遥感应用研究[M].北京:科学出版社,2006:134-136.

No Suggested Reading articles found!