Journal of Desert Research ›› 2024, Vol. 44 ›› Issue (3): 31-41.DOI: 10.7522/j.issn.1000-694X.2023.00132
Previous Articles Next Articles
Jiaqi Wang1(), Xiaomei Li1(
), Xiaokang Liu1, Miao Dong2
Received:
2023-08-24
Revised:
2023-09-30
Online:
2024-05-20
Published:
2024-06-11
Contact:
Xiaomei Li
CLC Number:
Jiaqi Wang, Xiaomei Li, Xiaokang Liu, Miao Dong. Landscape pattern and variation of riparian dunes and the aeolian-fluvial interaction in the upper reaches of Wuding River in Mu Us Sandy Land[J]. Journal of Desert Research, 2024, 44(3): 31-41.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00132
编号 | 传感器 类型 | 搭载 卫星 | 空间 分辨率 | 获取 日期 |
---|---|---|---|---|
1 | Thematic Mapper | Landsat4-5 | 30 m | 1990年7月 |
2 | Thematic Mapper | Landsat4-5 | 30 m | 2000年7月 |
3 | Thematic Mapper | Landsat4-5 | 30 m | 2010年7月 |
4 | Operational Land image | Landsat8 | 30 m | 2020年7月 |
Table 1 Remote sensing image data collection
编号 | 传感器 类型 | 搭载 卫星 | 空间 分辨率 | 获取 日期 |
---|---|---|---|---|
1 | Thematic Mapper | Landsat4-5 | 30 m | 1990年7月 |
2 | Thematic Mapper | Landsat4-5 | 30 m | 2000年7月 |
3 | Thematic Mapper | Landsat4-5 | 30 m | 2010年7月 |
4 | Operational Land image | Landsat8 | 30 m | 2020年7月 |
2000年 | 1990年 | 2000年 | |||||
---|---|---|---|---|---|---|---|
河道 | 流动沙丘 | 半固定沙丘 | 固定沙丘 | 绿色植被区 | 黄土丘陵区 | ||
1990年 | 21.75 | 69.89 | 114.49 | 46.42 | 25.36 | 71.28 | 349.19 |
河道 | 13.77 | 0.31 | 0.18 | 0.51 | 5.37 | 1.64 | 21.78 |
流动沙丘 | 0.12 | 39.59 | 18.97 | 1.14 | 0.03 | 1.21 | 61.06 |
半固定沙丘 | 0.07 | 7.70 | 46.43 | 2.64 | 0.01 | 0.93 | 57.78 |
固定沙丘 | 0.51 | 12.18 | 30.93 | 19.95 | 0.12 | 7.57 | 71.26 |
绿色植被区 | 5.20 | 1.13 | 1.46 | 2.87 | 19.16 | 5.12 | 34.94 |
黄土丘陵区 | 2.08 | 8.98 | 16.52 | 19.31 | 0.67 | 54.81 | 102.37 |
Table 2 Landscape shift and change in the upper reaches of Wuding River from 1990 to 2000
2000年 | 1990年 | 2000年 | |||||
---|---|---|---|---|---|---|---|
河道 | 流动沙丘 | 半固定沙丘 | 固定沙丘 | 绿色植被区 | 黄土丘陵区 | ||
1990年 | 21.75 | 69.89 | 114.49 | 46.42 | 25.36 | 71.28 | 349.19 |
河道 | 13.77 | 0.31 | 0.18 | 0.51 | 5.37 | 1.64 | 21.78 |
流动沙丘 | 0.12 | 39.59 | 18.97 | 1.14 | 0.03 | 1.21 | 61.06 |
半固定沙丘 | 0.07 | 7.70 | 46.43 | 2.64 | 0.01 | 0.93 | 57.78 |
固定沙丘 | 0.51 | 12.18 | 30.93 | 19.95 | 0.12 | 7.57 | 71.26 |
绿色植被区 | 5.20 | 1.13 | 1.46 | 2.87 | 19.16 | 5.12 | 34.94 |
黄土丘陵区 | 2.08 | 8.98 | 16.52 | 19.31 | 0.67 | 54.81 | 102.37 |
2010年 | 2000年 | 2010年 | |||||
---|---|---|---|---|---|---|---|
河道 | 流动沙丘 | 半固定沙丘 | 固定沙丘 | 绿色植被区 | 黄土丘陵区 | ||
2000年 | 21.79 | 61.07 | 57.78 | 71.27 | 34.93 | 102.39 | 349.23 |
河道 | 9.85 | 0.03 | 0.02 | 0.08 | 2.41 | 0.54 | 12.93 |
流动沙丘 | 0.01 | 21.72 | 4.37 | 0.78 | 0.02 | 0.37 | 27.27 |
半固定沙丘 | 0.01 | 9.45 | 26.79 | 4.27 | 0.05 | 0.77 | 41.34 |
固定沙丘 | 0.40 | 12.09 | 19.16 | 43.45 | 1.13 | 10.68 | 86.91 |
绿色植被区 | 9.42 | 1.05 | 0.39 | 3.13 | 26.57 | 6.34 | 46.9 |
黄土丘陵区 | 0.63 | 13.80 | 5.88 | 17.85 | 3.11 | 73.95 | 115.22 |
人为景观 | 1.47 | 2.93 | 1.17 | 1.71 | 1.64 | 9.74 | 18.66 |
Table 3 Landscape shift and change in the upper reaches of Wuding River from 2000 to 2010
2010年 | 2000年 | 2010年 | |||||
---|---|---|---|---|---|---|---|
河道 | 流动沙丘 | 半固定沙丘 | 固定沙丘 | 绿色植被区 | 黄土丘陵区 | ||
2000年 | 21.79 | 61.07 | 57.78 | 71.27 | 34.93 | 102.39 | 349.23 |
河道 | 9.85 | 0.03 | 0.02 | 0.08 | 2.41 | 0.54 | 12.93 |
流动沙丘 | 0.01 | 21.72 | 4.37 | 0.78 | 0.02 | 0.37 | 27.27 |
半固定沙丘 | 0.01 | 9.45 | 26.79 | 4.27 | 0.05 | 0.77 | 41.34 |
固定沙丘 | 0.40 | 12.09 | 19.16 | 43.45 | 1.13 | 10.68 | 86.91 |
绿色植被区 | 9.42 | 1.05 | 0.39 | 3.13 | 26.57 | 6.34 | 46.9 |
黄土丘陵区 | 0.63 | 13.80 | 5.88 | 17.85 | 3.11 | 73.95 | 115.22 |
人为景观 | 1.47 | 2.93 | 1.17 | 1.71 | 1.64 | 9.74 | 18.66 |
2020年 | 2010年 | 2020年 | ||||||
---|---|---|---|---|---|---|---|---|
河道 | 流动沙丘 | 半固定沙丘 | 固定沙丘 | 绿色植被区 | 黄土丘陵区 | 人为景观 | ||
2010年 | 12.93 | 27.25 | 41.33 | 86.90 | 46.91 | 115.23 | 18.67 | 349.20 |
河道 | 6.88 | 0.11 | 0.07 | 0.17 | 7.25 | 0.55 | 0.51 | 15.54 |
流动沙丘 | 0.00 | 7.61 | 1.65 | 2.05 | 0.08 | 1.06 | 0.26 | 12.71 |
半固定沙丘 | 0.00 | 4.29 | 16.70 | 11.38 | 0.10 | 1.94 | 0.14 | 34.55 |
固定沙丘 | 0.10 | 5.31 | 12.65 | 51.02 | 3.49 | 29.22 | 0.85 | 102.64 |
绿色植被区 | 4.72 | 5.41 | 5.10 | 6.65 | 27.55 | 4.03 | 2.32 | 55.78 |
黄土丘陵区 | 0.49 | 3.14 | 3.88 | 13.18 | 6.05 | 72.57 | 8.39 | 107.70 |
人为景观 | 0.74 | 1.38 | 1.28 | 2.45 | 2.39 | 5.86 | 6.20 | 20.30 |
Table 4 Landscape shift and change in the upper reaches of Wuding River from 2010 to 2020
2020年 | 2010年 | 2020年 | ||||||
---|---|---|---|---|---|---|---|---|
河道 | 流动沙丘 | 半固定沙丘 | 固定沙丘 | 绿色植被区 | 黄土丘陵区 | 人为景观 | ||
2010年 | 12.93 | 27.25 | 41.33 | 86.90 | 46.91 | 115.23 | 18.67 | 349.20 |
河道 | 6.88 | 0.11 | 0.07 | 0.17 | 7.25 | 0.55 | 0.51 | 15.54 |
流动沙丘 | 0.00 | 7.61 | 1.65 | 2.05 | 0.08 | 1.06 | 0.26 | 12.71 |
半固定沙丘 | 0.00 | 4.29 | 16.70 | 11.38 | 0.10 | 1.94 | 0.14 | 34.55 |
固定沙丘 | 0.10 | 5.31 | 12.65 | 51.02 | 3.49 | 29.22 | 0.85 | 102.64 |
绿色植被区 | 4.72 | 5.41 | 5.10 | 6.65 | 27.55 | 4.03 | 2.32 | 55.78 |
黄土丘陵区 | 0.49 | 3.14 | 3.88 | 13.18 | 6.05 | 72.57 | 8.39 | 107.70 |
人为景观 | 0.74 | 1.38 | 1.28 | 2.45 | 2.39 | 5.86 | 6.20 | 20.30 |
类别 | 河段 | |||
---|---|---|---|---|
a区 | b区 | b区 | ||
直线长度/km | 4.26 | 5.69 | 4.36 | |
1990年 | 实际长度/km | 5.79 | 6.03 | 5.54 |
弯曲系数 | 1.36 | 1.06 | 1.27 | |
2000年 | 实际长度/km | 5.75 | 5.92 | 5.14 |
弯曲系数 | 1.35 | 1.04 | 1.18 | |
2010年 | 实际长度/km | 5.79 | 5.97 | 5.54 |
弯曲系数 | 1.36 | 1.05 | 1.27 | |
2020年 | 实际长度/km | 5.62 | 5.98 | 5.89 |
弯曲系数 | 1.32 | 1.05 | 1.35 |
Table 5 Statistics of river length in different river sections
类别 | 河段 | |||
---|---|---|---|---|
a区 | b区 | b区 | ||
直线长度/km | 4.26 | 5.69 | 4.36 | |
1990年 | 实际长度/km | 5.79 | 6.03 | 5.54 |
弯曲系数 | 1.36 | 1.06 | 1.27 | |
2000年 | 实际长度/km | 5.75 | 5.92 | 5.14 |
弯曲系数 | 1.35 | 1.04 | 1.18 | |
2010年 | 实际长度/km | 5.79 | 5.97 | 5.54 |
弯曲系数 | 1.36 | 1.05 | 1.27 | |
2020年 | 实际长度/km | 5.62 | 5.98 | 5.89 |
弯曲系数 | 1.32 | 1.05 | 1.35 |
1 | 彼得罗夫.世界荒漠[M].胡孟春,李耀明,译.北京:中国环境科学出版社,2010:12-55. |
2 | Nanson G C, Tooth S, Knighton A D.A global perspective on dryland rivers:perceptions,misconceptions and distinctions[M]//Bull L J,Kirkby M J.Dryland Rivers:Hydrology and Geomorphology of Semi-arid Channels.Chichester,USA:Wiley,2002:17-54. |
3 | Bullard J E, McTainsh G H.Aeolian-fluvial interactions in dryland environments:examples,concepts and Australia case study[J].Progress in Physical Geography,2003,27:471-501. |
4 | 李小妹,严平.中国北方地区沙漠与河流景观格局[J].地理科学进展,2014,33(9):1198-1208. |
5 | Draut A E.Effects of river regulation on aeolian landscapes,Colorado River,southwestern USA[J].Journal of Geophysics Research,2012,117:F02022. |
6 | Yan P, Li X M, Ma Y F,et al.Morphological characteristics of interactions between deserts and rivers in northern China[J].Aeolian Research,2015,19:225-233. |
7 | El-Baz F.Sand accumulation and groundwater in the eastern Sahara[J].Episodes,1998,21(3):147-151. |
8 | Kocurek G.Arid zone geomorphology:process,form and change in drylands[J].Sedimentary Geology,1998,116(3/4):275. |
9 | 张萍,郑明国,蔡强国,等.无定河黄土区降水和产沙的相关性及其时空变异[J].水土保持学报,2020,34(1):8-16. |
10 | 颜明,孙莉英,闫云霞,等.风水两相作用和人类活动对无定河粗泥沙输沙量的影响[J].水土保持通报,2012,32(6):89-92. |
11 | 马雪菲,张鑫.无定河输沙量变化及其原因分析[J].人民黄河,2014,36(8):7-9. |
12 | 任宗萍,马勇勇,王友胜,等.无定河流域不同地貌区径流变化归因分析[J].生态学报,2019,39(12):4309-4318. |
13 | 吕锦心,梁康,刘昌明,等.无定河流域土地覆被空间分异机制及相关水碳变量变化[J].干旱区研究,2023,40(4):563-572. |
14 | 顾立霞,吕萍,马芳,等.不同数据源下毛乌素沙地风况及输沙势特征[J].中国沙漠,2022,42(5):54-62. |
15 | 王心源,王飞跃,杜方明,等.阿拉善东南部自然环境演变与地面流沙路径的分析[J].地理研究,2002(4):479-486. |
16 | Zhou N, Zhang C, Wu X,et al.The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid environment:a case study from Mainling Valley,Qinghai-Tibet Plateau[J].Geomorphology,2014,224:27-38. |
17 | 刘涛.王圪堵水库溃坝洪水分析[J].陕西水利,2022(7):77-79. |
18 | 刘倩倩,杨小平.毛乌素沙地和库布齐沙漠风成沙粒度参数的空间变化及其成因[J].中国沙漠,2020,40(5):158-168. |
19 | 舒培仙,牛东风,李保生,等.毛乌素沙地现代沙丘沙的粒度特征及其意义[J].中国沙漠,2016,36(1):158-166. |
20 | 李秋艳,蔡强国,方海燕.黄土高原风水蚀交错带风力作用对流域产沙贡献的空间特征研究[J].水资源与水工程学报,2011,22(4):39-45. |
21 | El-Baz F, Maingue M, Robinson C.Fluvio-aeolian dynamics in the north-eastern Sahara:the relationship between fluvial/aeolian systems and ground-water concentration[J].Journal of Arid Environments,2000,44(2):173-183. |
22 | 王翠,雷加强,李生宇,等.策勒绿洲-沙漠过渡带风沙流挟沙粒度的垂直分异[J].干旱区地理,2014,37(2):230-238. |
23 | Bullard J E, Livingstone I.Interactions between aeolian and fluvial systems in dryland environments[J].Area,2002,34:8-16. |
24 | 颜明,张应华,贺莉,等.无定河上游河道对沙漠化的阻截效应[J].中国沙漠,2022,42(2):62-68. |
25 | 白旭赢,王玉杰,王云琦,等.毛乌素沙地水体面积变化及驱动因子[J].中国沙漠,2023,43(2):65-73. |
26 | Ren Z, Li Z, Liu X,et al.Comparing watershed afforestation and natural revegetation impacts on soil moisture in the semiarid Loess Plateau of China[J].Scientific Reports,2018,8(1):2972. |
27 | Liu X K, Dong Z B, Ding Y P,et al.Development of center pivot irrigation farmlands from 2009 to 2018 in the Mu Us dune field,China:implication for land use planning[J].Journal of Geographical Sciences,2022,32(10):1956-1968. |
28 | 刘志民,余海滨.“山水林田湖草沙生命共同体”理念下的科尔沁沙地生态治理[J].中国沙漠,2022,42(1):34-40. |
29 | 农晓星,聂卫波,马孝义.无定河流域风沙滩区河道基流变化规律与驱动因素分析[J].水土保持学报,2023,37(1):103-113. |
30 | 靳鹤龄,董光荣.试论干旱区河流在沙漠地貌发育中的作用:以塔克拉玛干沙漠和田河流域为例[J].中国沙漠,2001,21(4):367-373. |
[1] | Jiaxin Feng, Yueru Wu, Shuo Qiao, Xiya Liu, Haibing Wang. Characteristics of changes in soil components and trace element contents during the reversal of desertification in Mu Us Sandy Land [J]. Journal of Desert Research, 2024, 44(1): 218-227. |
[2] | Rongrong Wang, Jin Fan, Shixiang Cong, Hailong Yu, Juying Huang. Enzyme activity characteristics and their influencing factors of different biocrusts around thermal plant in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(4): 209-219. |
[3] | Guangyu Hong, Xiaojiang Wang, Qingpu Su, Long Hai, Shaokun Wang, Xiaowei Gao, Yanyan Xu, Jingshan Zhou, Zhuofan Li, Zihao Li, Ercha Hu. Simulation of soil moisture and leakage characteristics of mobile dunes in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(2): 288-298. |
[4] | Xuying Bai, Yujie Wang, Yunqi Wang, Wenbin Yang, Tao Wang, Yiben Cheng. Changes and driving factors of water body area in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(2): 65-73. |
[5] | Yuzhe Yang, Dapeng Yue, Jingbo Zhao, Yiting Liu, Jianing Li, Tianyu Yang. Chroma characteristics and its paleoclimatic significance of L3 and S3 loess-paleosol in the southeast margin of Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(1): 176-186. |
[6] | Hongmei Liu, Haibing Wang, Kuan Li, Xiya Liu, Yuyan Ren, Yandong Zhang. Structure, benefits and behavior of farmers and herdsmen of the Kulun ecological economic circle in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(1): 48-57. |
[7] | Xiaohan Chen, Yongsheng Wu, Chunxing Hai. Effects of surface dew under different types of sand-fixing shrubs in the southern margin of Mu Us Sandy Land, Northern China [J]. Journal of Desert Research, 2023, 43(1): 83-95. |
[8] | Guangyu Hong, Xiaojiang Wang, Tieshan Liu, Hailong, Zhenting Wu, Huercha, Xiaowei Gao, Haifeng Yang, Zhuofan Li, Zihao Li, Siqin, Lejun Wang. Applicability of Hydrus-1D Model in simulating the soil moisture in Hedysarum leave in Mu Us Sandy Land, China [J]. Journal of Desert Research, 2022, 42(6): 233-242. |
[9] | Zhijun Wang, Yaoling He, Zhaoshu Zhou. Pore water pressure variation characteristics during the initiation processes of the accumulation body of the gully desert mud flows [J]. Journal of Desert Research, 2022, 42(5): 212-220. |
[10] | Lixia Gu, Ping Lv, Fang Ma, Guoxiang Chen, Zhun Liang, Mingjing Xu, Ying Yang. Drift potential characteristics of Mu Us Sandy Land calculated with different data sources [J]. Journal of Desert Research, 2022, 42(5): 54-62. |
[11] | Xinying Liu, Ming Jin, Fan Yang, Yapeng Ma, Hui Liu, Xiaoyun Sun, Dunsheng Xia. A preliminary study of environmental changes since middle Holocene and its impacts on the evolution of civilization in the eastern Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(5): 92-100. |
[12] | Yuyan Ren, Yufeng Zheng, Yandong Zhang, Haibing Wang, Shiqiang Wang, Jinjun He. Evaluation on development sustainability of kulun eco-economic circle in the Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(4): 264-272. |
[13] | Honglin Lian, Xueying Han, Yali Liu, Yuqing Han, Wenbin Yang, Wei Xiong. Study on spatiotemporal characteristics of atmospheric drought from 1981 to 2020 in the Mu Us Sandy Land of China based on SPEI index [J]. Journal of Desert Research, 2022, 42(4): 71-80. |
[14] | Shuo Qiao, Haibing Wang, Hejun Zuo, Xiya Liu, Yueru Wu. Evolution of ecological service value and network pattern of Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(3): 118-126. |
[15] | Ming Yan, Yinghua Zhang, Li He, Weiming Cheng, Suiji Wang, Jiongxin Xu. Blocking effect of upper reaches of Wuding River on desertification [J]. Journal of Desert Research, 2022, 42(2): 62-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech