Journal of Desert Research ›› 2023, Vol. 43 ›› Issue (4): 209-219.DOI: 10.7522/j.issn.1000-694X.2023.00011
Rongrong Wang1(), Jin Fan1, Shixiang Cong1, Hailong Yu1(
), Juying Huang2
Received:
2022-10-21
Revised:
2023-02-20
Online:
2023-07-20
Published:
2023-08-14
Contact:
Hailong Yu
CLC Number:
Rongrong Wang, Jin Fan, Shixiang Cong, Hailong Yu, Juying Huang. Enzyme activity characteristics and their influencing factors of different biocrusts around thermal plant in Mu Us Sandy Land[J]. Journal of Desert Research, 2023, 43(4): 209-219.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00011
生物结皮类型 | 厚度/mm | 覆盖度/% | 优势种 | 生物量/(mg·g-1) |
---|---|---|---|---|
藻结皮 | 4.50±0.31a | 82 | 具鞘微鞘藻(Microcolus vaginatus)、念珠藻(Nostoc commune Vauch)、隐头舟形藻(Navicula cryptocephala) | 11.23±0.05a |
混生结皮 | 5.53±0.34b | 86 | 具鞘微鞘藻、念珠藻、石果衣(Endocarpon pusillum)、糙聚盘衣(Glypholecia scabra) | 18.15±0.01b |
藓结皮 | 7.73±0.49c | 74 | 真藓(Bryum argenteum Hedw)、土生对齿藓(Didymodon vinealis)、盐土藓(Pterygoneurum subsessile)、厚肋流苏藓(Crossidium crassinerve) | 31.07±0.02c |
Table 1 Basic conditions of biocrusts in study area
生物结皮类型 | 厚度/mm | 覆盖度/% | 优势种 | 生物量/(mg·g-1) |
---|---|---|---|---|
藻结皮 | 4.50±0.31a | 82 | 具鞘微鞘藻(Microcolus vaginatus)、念珠藻(Nostoc commune Vauch)、隐头舟形藻(Navicula cryptocephala) | 11.23±0.05a |
混生结皮 | 5.53±0.34b | 86 | 具鞘微鞘藻、念珠藻、石果衣(Endocarpon pusillum)、糙聚盘衣(Glypholecia scabra) | 18.15±0.01b |
藓结皮 | 7.73±0.49c | 74 | 真藓(Bryum argenteum Hedw)、土生对齿藓(Didymodon vinealis)、盐土藓(Pterygoneurum subsessile)、厚肋流苏藓(Crossidium crassinerve) | 31.07±0.02c |
Igeo | <0 | 0~1 | 1~2 | 2~3 | 3~4 | 4~5 | 5~6 |
---|---|---|---|---|---|---|---|
污染等级 | 无 | 轻-中度 | 中度 | 中-强度 | 强度 | 强-极强度 | 极强 |
Table 2 Classification criterions of geo-accumulation index
Igeo | <0 | 0~1 | 1~2 | 2~3 | 3~4 | 4~5 | 5~6 |
---|---|---|---|---|---|---|---|
污染等级 | 无 | 轻-中度 | 中度 | 中-强度 | 强度 | 强-极强度 | 极强 |
样品 | 土层 | 黏粒 /% | 粉粒 /% | 砂粒 /% | 容重 /(g·cm-3) | 有机碳 /(g·kg-1) | 全氮 /(g·kg-1) | 全磷 /(g·kg-1) | pH |
---|---|---|---|---|---|---|---|---|---|
藻结皮 | 结皮层 | 7.82±1.39Aa | 47.31±2.94Aa | 44.88±3.05ABa | 1.12±0.05Aa | 14.75±0.38Aa | 1.30±0.06Aa | 0.54±0.05Aa | 8.35±0.01Aa |
0~5 cm | 5.76±0.16Ba | 47.23±4.05Aa | 47.00±4.19ABa | 1.27±0.01Bab | 3.88±0.55Ba | 0.80±0.06Ba | 0.46±0.02ABa | 8.72±0.02Ba | |
5~10 cm | 4.55±0.29Ba | 44.30±0.41Aab | 51.15±0.53Aa | 1.39±0.05Ba | 3.68±0.27Ba | 0.77±0.04Ba | 0.39±0.02ABa | 8.82±0.06Ba | |
10~20 cm | 7.78±2.87Aa | 49.34±3.57Aa | 42.88±2.89Ba | 1.41±0.06Bb | 3.45±0.19Ba | 0.83±0.04Ba | 0.32±0.06Ba | 8.74±0.13Ba | |
混生结皮 | 结皮层 | 4.96±0.18Ab | 48.47±0.50ABa | 46.57±0.59Aa | 1.10±0.03Aa | 15.82±1.42Aa | 1.42±0.10Aa | 0.58±0.02Aa | 8.37±0.03Aa |
0~5 cm | 4.42±0.17Aa | 43.13±1.22Bab | 52.45±1.39Ba | 1.33±0.03Ba | 4.55±0.10Ba | 0.82±0.03Ba | 0.47±0.01Ba | 8.99±0.01Bb | |
5~10 cm | 4.34±0.18Aa | 46.83±1.46ABa | 48.84±1.47ABa | 1.30±0.05Bb | 4.64±0.42Ba | 0.77±0.07Ba | 0.40±0.01Ca | 9.03±0.04Bb | |
10~20 cm | 5.71±0.91Aa | 49.31±2.67Aa | 44.98±3.58Aa | 1.36±0.04Bb | 4.27±0.21Ba | 0.72±0.05Ba | 0.37±0.02Da | 8.84±0.05Ba | |
藓结皮 | 结皮层 | 3.97±0.22Ab | 46.98±0.43Aa | 49.05±0.54Aa | 1.05±0.01Aa | 23.67±2.64Ab | 1.89±0.21Aa | 0.79±0.01Ab | 8.22±0.09Ab |
0~5 cm | 5.50±0.91Aa | 41.32±0.78Ab | 53.19±1.45Aa | 1.18±0.04Bb | 4.80±0.25Ba | 0.95±0.05Ba | 0.51±0.05Ba | 8.83±0.09Bab | |
5~10 cm | 8.36±4.43ABb | 40.71±2.32Ab | 50.94±5.50Aa | 1.34±0.05Bb | 4.29±0.25Ba | 1.04±0.07Bb | 0.42±0.01BCa | 9.02±0.07Bb | |
10~20 cm | 14.17±8.85Bb | 46.46±3.70Aa | 39.38±5.94Ba | 1.37±0.06Bb | 4.68±0.68Ba | 0.88±0.05Ba | 0.36±0.03Ca | 8.95±0.13Ba |
Table 3 Soil physicochemical properties of different biocrusts
样品 | 土层 | 黏粒 /% | 粉粒 /% | 砂粒 /% | 容重 /(g·cm-3) | 有机碳 /(g·kg-1) | 全氮 /(g·kg-1) | 全磷 /(g·kg-1) | pH |
---|---|---|---|---|---|---|---|---|---|
藻结皮 | 结皮层 | 7.82±1.39Aa | 47.31±2.94Aa | 44.88±3.05ABa | 1.12±0.05Aa | 14.75±0.38Aa | 1.30±0.06Aa | 0.54±0.05Aa | 8.35±0.01Aa |
0~5 cm | 5.76±0.16Ba | 47.23±4.05Aa | 47.00±4.19ABa | 1.27±0.01Bab | 3.88±0.55Ba | 0.80±0.06Ba | 0.46±0.02ABa | 8.72±0.02Ba | |
5~10 cm | 4.55±0.29Ba | 44.30±0.41Aab | 51.15±0.53Aa | 1.39±0.05Ba | 3.68±0.27Ba | 0.77±0.04Ba | 0.39±0.02ABa | 8.82±0.06Ba | |
10~20 cm | 7.78±2.87Aa | 49.34±3.57Aa | 42.88±2.89Ba | 1.41±0.06Bb | 3.45±0.19Ba | 0.83±0.04Ba | 0.32±0.06Ba | 8.74±0.13Ba | |
混生结皮 | 结皮层 | 4.96±0.18Ab | 48.47±0.50ABa | 46.57±0.59Aa | 1.10±0.03Aa | 15.82±1.42Aa | 1.42±0.10Aa | 0.58±0.02Aa | 8.37±0.03Aa |
0~5 cm | 4.42±0.17Aa | 43.13±1.22Bab | 52.45±1.39Ba | 1.33±0.03Ba | 4.55±0.10Ba | 0.82±0.03Ba | 0.47±0.01Ba | 8.99±0.01Bb | |
5~10 cm | 4.34±0.18Aa | 46.83±1.46ABa | 48.84±1.47ABa | 1.30±0.05Bb | 4.64±0.42Ba | 0.77±0.07Ba | 0.40±0.01Ca | 9.03±0.04Bb | |
10~20 cm | 5.71±0.91Aa | 49.31±2.67Aa | 44.98±3.58Aa | 1.36±0.04Bb | 4.27±0.21Ba | 0.72±0.05Ba | 0.37±0.02Da | 8.84±0.05Ba | |
藓结皮 | 结皮层 | 3.97±0.22Ab | 46.98±0.43Aa | 49.05±0.54Aa | 1.05±0.01Aa | 23.67±2.64Ab | 1.89±0.21Aa | 0.79±0.01Ab | 8.22±0.09Ab |
0~5 cm | 5.50±0.91Aa | 41.32±0.78Ab | 53.19±1.45Aa | 1.18±0.04Bb | 4.80±0.25Ba | 0.95±0.05Ba | 0.51±0.05Ba | 8.83±0.09Bab | |
5~10 cm | 8.36±4.43ABb | 40.71±2.32Ab | 50.94±5.50Aa | 1.34±0.05Bb | 4.29±0.25Ba | 1.04±0.07Bb | 0.42±0.01BCa | 9.02±0.07Bb | |
10~20 cm | 14.17±8.85Bb | 46.46±3.70Aa | 39.38±5.94Ba | 1.37±0.06Bb | 4.68±0.68Ba | 0.88±0.05Ba | 0.36±0.03Ca | 8.95±0.13Ba |
样品 | 土层 | Hg/(mg·kg-1) | Pb/(mg·kg-1) | As/(mg·kg-1) | Cd/(mg·kg-1) | Cr/(mg·kg-1) | Zn/(mg·kg-1) |
---|---|---|---|---|---|---|---|
藻结皮 | 结皮层 | 0.076±0.01ab | 16.200±0.32ab | 13.190±0.31ab | 0.281±0.02a | 52.732±1.96a | 39.507±0.97a |
0~5 cm | 0.072±0.01a | 13.332±0.68a | 12.802±0.41a | 0.131±0.02a | 52.566±2.07a | 32.086±0.71a | |
5~10 cm | 0.071±0.00a | 12.681±0.05a | 11.926±0.30a | 0.105±0.00a | 48.902±0.16a | 31.047±0.71a | |
10~20 cm | 0.070±0.00a | 12.713±0.33a | 11.543±0.28a | 0.103±0.00a | 50.147±2.35a | 31.040±0.60a | |
混生结皮 | 结皮层 | 0.079±0.01ab | 18.776±0.12b | 15.952±1.53a | 0.327±0.01a | 56.935±2.70a | 41.262±0.22ab |
0~5 cm | 0.078±0.01ab | 13.244±0.33a | 14.498±1.38a | 0.126±0.00a | 53.631±2.00a | 31.765±0.84a | |
5~10 cm | 0.070±0.00a | 12.701±0.24a | 12.766±0.34ab | 0.101±0.00a | 53.162±0.88a | 31.707±0.70a | |
10~20 cm | 0.074±0.00ab | 12.402±0.53a | 12.133±0.36a | 0.099±0.00a | 52.302±2.03a | 30.861±0.71a | |
藓结皮 | 结皮层 | 0.095±0.01a | 19.638±1.37b | 16.627±3.11a | 0.409±0.08a | 57.063±3.01a | 44.412±2.16b |
0~5 cm | 0.092±0.01b | 13.177±0.18a | 14.782±3.57a | 0.136±0.01a | 52.936±0.97a | 32.313±0.42a | |
5~10 cm | 0.080±0.04a | 11.663±0.52b | 14.063±0.51b | 0.105±0.00a | 49.778±1.53a | 30.041±0.48b | |
10~20 cm | 0.079±0.00b | 11.816±0.90a | 11.470±0.11a | 0.102±0.00a | 48.540±3.80a | 32.144±1.68a | |
风沙土背景值[ | 0.016 | 13.8 | 4.3 | 0.044 | 24.8 | 29.8 | |
宁夏土壤环境背景值[ | 0.021 | 20.6 | 11.9 | 0.112 | 60.0 | 58.8 |
Table 4 Characteristics of heavy metal contents of different biocrusts
样品 | 土层 | Hg/(mg·kg-1) | Pb/(mg·kg-1) | As/(mg·kg-1) | Cd/(mg·kg-1) | Cr/(mg·kg-1) | Zn/(mg·kg-1) |
---|---|---|---|---|---|---|---|
藻结皮 | 结皮层 | 0.076±0.01ab | 16.200±0.32ab | 13.190±0.31ab | 0.281±0.02a | 52.732±1.96a | 39.507±0.97a |
0~5 cm | 0.072±0.01a | 13.332±0.68a | 12.802±0.41a | 0.131±0.02a | 52.566±2.07a | 32.086±0.71a | |
5~10 cm | 0.071±0.00a | 12.681±0.05a | 11.926±0.30a | 0.105±0.00a | 48.902±0.16a | 31.047±0.71a | |
10~20 cm | 0.070±0.00a | 12.713±0.33a | 11.543±0.28a | 0.103±0.00a | 50.147±2.35a | 31.040±0.60a | |
混生结皮 | 结皮层 | 0.079±0.01ab | 18.776±0.12b | 15.952±1.53a | 0.327±0.01a | 56.935±2.70a | 41.262±0.22ab |
0~5 cm | 0.078±0.01ab | 13.244±0.33a | 14.498±1.38a | 0.126±0.00a | 53.631±2.00a | 31.765±0.84a | |
5~10 cm | 0.070±0.00a | 12.701±0.24a | 12.766±0.34ab | 0.101±0.00a | 53.162±0.88a | 31.707±0.70a | |
10~20 cm | 0.074±0.00ab | 12.402±0.53a | 12.133±0.36a | 0.099±0.00a | 52.302±2.03a | 30.861±0.71a | |
藓结皮 | 结皮层 | 0.095±0.01a | 19.638±1.37b | 16.627±3.11a | 0.409±0.08a | 57.063±3.01a | 44.412±2.16b |
0~5 cm | 0.092±0.01b | 13.177±0.18a | 14.782±3.57a | 0.136±0.01a | 52.936±0.97a | 32.313±0.42a | |
5~10 cm | 0.080±0.04a | 11.663±0.52b | 14.063±0.51b | 0.105±0.00a | 49.778±1.53a | 30.041±0.48b | |
10~20 cm | 0.079±0.00b | 11.816±0.90a | 11.470±0.11a | 0.102±0.00a | 48.540±3.80a | 32.144±1.68a | |
风沙土背景值[ | 0.016 | 13.8 | 4.3 | 0.044 | 24.8 | 29.8 | |
宁夏土壤环境背景值[ | 0.021 | 20.6 | 11.9 | 0.112 | 60.0 | 58.8 |
样品 | 土层 | Hg | Pb | As | Cd | Cr | Zn |
---|---|---|---|---|---|---|---|
藻结皮 | 结皮层 | 1.657 | -0.354 | 1.032 | 2.091 | 0.503 | -0.178 |
0~5 cm | 1.583 | -0.635 | 0.989 | 0.985 | 0.499 | -0.478 | |
5~10 cm | 1.573 | -0.707 | 0.887 | 0.668 | 0.395 | -0.526 | |
10~20 cm | 1.537 | -0.703 | 0.840 | 0.636 | 0.431 | -0.526 | |
混生结皮 | 结皮层 | 1.722 | -0.141 | 1.306 | 2.309 | 0.614 | -0.115 |
0~5 cm | 1.701 | -0.644 | 1.168 | 0.937 | 0.528 | -0.493 | |
5~10 cm | 1.539 | -0.705 | 0.985 | 0.618 | 0.515 | -0.495 | |
10~20 cm | 1.616 | -0.739 | 0.912 | 0.584 | 0.492 | -0.534 | |
藓结皮 | 结皮层 | 1.988 | -0.076 | 1.366 | 2.632 | 0.617 | -0.009 |
0~5 cm | 1.941 | -0.652 | 1.196 | 1.047 | 0.509 | -0.468 | |
5~10 cm | 1.743 | -0.828 | 1.125 | 0.673 | 0.420 | -0.573 | |
10~20 cm | 1.716 | -0.809 | 0.831 | 0.632 | 0.384 | -0.476 |
Table 5 The geoaccumulation index of different biocrusts in mining area
样品 | 土层 | Hg | Pb | As | Cd | Cr | Zn |
---|---|---|---|---|---|---|---|
藻结皮 | 结皮层 | 1.657 | -0.354 | 1.032 | 2.091 | 0.503 | -0.178 |
0~5 cm | 1.583 | -0.635 | 0.989 | 0.985 | 0.499 | -0.478 | |
5~10 cm | 1.573 | -0.707 | 0.887 | 0.668 | 0.395 | -0.526 | |
10~20 cm | 1.537 | -0.703 | 0.840 | 0.636 | 0.431 | -0.526 | |
混生结皮 | 结皮层 | 1.722 | -0.141 | 1.306 | 2.309 | 0.614 | -0.115 |
0~5 cm | 1.701 | -0.644 | 1.168 | 0.937 | 0.528 | -0.493 | |
5~10 cm | 1.539 | -0.705 | 0.985 | 0.618 | 0.515 | -0.495 | |
10~20 cm | 1.616 | -0.739 | 0.912 | 0.584 | 0.492 | -0.534 | |
藓结皮 | 结皮层 | 1.988 | -0.076 | 1.366 | 2.632 | 0.617 | -0.009 |
0~5 cm | 1.941 | -0.652 | 1.196 | 1.047 | 0.509 | -0.468 | |
5~10 cm | 1.743 | -0.828 | 1.125 | 0.673 | 0.420 | -0.573 | |
10~20 cm | 1.716 | -0.809 | 0.831 | 0.632 | 0.384 | -0.476 |
变异来源 | 自由度df | 碱性磷酸酶 | 蔗糖酶 | 过氧化氢酶 | 脲酶 |
---|---|---|---|---|---|
生物结皮类型 | 2 | 41.845*** | 1.141 | 12.832*** | 23.079*** |
土壤深度 | 3 | 181.520*** | 62.026*** | 58.306*** | 76.540*** |
生物结皮类型×土壤深度 | 6 | 9.254*** | 0.982 | 3.259** | 14.289*** |
误差 | 54 |
Table 6 Two-way ANOVA of enzyme activities of different biocrusts
变异来源 | 自由度df | 碱性磷酸酶 | 蔗糖酶 | 过氧化氢酶 | 脲酶 |
---|---|---|---|---|---|
生物结皮类型 | 2 | 41.845*** | 1.141 | 12.832*** | 23.079*** |
土壤深度 | 3 | 181.520*** | 62.026*** | 58.306*** | 76.540*** |
生物结皮类型×土壤深度 | 6 | 9.254*** | 0.982 | 3.259** | 14.289*** |
误差 | 54 |
酶活性 | 土壤性质 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hg | Pb | As | Cd | Cr | Zn | 容重 | 黏粒 | 粉粒 | 砂粒 | 土壤有机碳 | 全氮 | 全磷 | pH | |
过氧化氢酶 | 0.275 | 0.851*** | 0.483** | 0.832*** | 0.559*** | 0.838*** | -0.675*** | -0.265 | 0.132 | 0.128 | 0.831*** | 0.710*** | 0.783*** | -0.565*** |
碱性磷酸酶 | 0.352* | 0.838*** | 0.468** | 0.824*** | 0.496** | 0.844*** | -0.757*** | -0.158 | 0.081 | 0.075 | 0.826*** | 0.843*** | 0.810*** | -0.650*** |
脲酶 | 0.427** | 0.746*** | 0.422* | 0.784*** | 0.385* | 0.739*** | -0.651*** | -0.177 | -0.063 | 0.197 | 0.802*** | 0.756*** | 0.817*** | -0.608*** |
蔗糖酶 | 0.240 | 0.815*** | 0.311 | 0.786*** | 0.449** | 0.819*** | -0.748*** | -0.152 | 0.111 | 0.048 | 0.791*** | 0.796*** | 0.750*** | -0.645*** |
Table 7 Correlation between enzyme activities of biocrusts and soil environment
酶活性 | 土壤性质 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hg | Pb | As | Cd | Cr | Zn | 容重 | 黏粒 | 粉粒 | 砂粒 | 土壤有机碳 | 全氮 | 全磷 | pH | |
过氧化氢酶 | 0.275 | 0.851*** | 0.483** | 0.832*** | 0.559*** | 0.838*** | -0.675*** | -0.265 | 0.132 | 0.128 | 0.831*** | 0.710*** | 0.783*** | -0.565*** |
碱性磷酸酶 | 0.352* | 0.838*** | 0.468** | 0.824*** | 0.496** | 0.844*** | -0.757*** | -0.158 | 0.081 | 0.075 | 0.826*** | 0.843*** | 0.810*** | -0.650*** |
脲酶 | 0.427** | 0.746*** | 0.422* | 0.784*** | 0.385* | 0.739*** | -0.651*** | -0.177 | -0.063 | 0.197 | 0.802*** | 0.756*** | 0.817*** | -0.608*** |
蔗糖酶 | 0.240 | 0.815*** | 0.311 | 0.786*** | 0.449** | 0.819*** | -0.748*** | -0.152 | 0.111 | 0.048 | 0.791*** | 0.796*** | 0.750*** | -0.645*** |
项目 | Zn | Pb | Cd | 土壤有机碳 | 全磷 | 容重 | 全氮 | pH | Cr | As | Hg | 黏粒 | 砂粒 | 粉粒 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
解释度/% | 64.4 | 62.9 | 62.5 | 60.7 | 58.2 | 55.4 | 54.1 | 42.5 | 24.1 | 16.2 | 8.8 | 2.6 | 0.9 | 0.7 |
F | 61.4 | 57.6 | 56.6 | 52.5 | 47.3 | 42.3 | 40.1 | 25.2 | 10.8 | 6.6 | 3.3 | 0.9 | 0.3 | 0.2 |
P | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.014 | 0.076 | 0.356 | 0.634 | 0.746 |
Table 8 Significance test of redundancy analysis (RDA) of biocrusts enzyme activities and environmental factors
项目 | Zn | Pb | Cd | 土壤有机碳 | 全磷 | 容重 | 全氮 | pH | Cr | As | Hg | 黏粒 | 砂粒 | 粉粒 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
解释度/% | 64.4 | 62.9 | 62.5 | 60.7 | 58.2 | 55.4 | 54.1 | 42.5 | 24.1 | 16.2 | 8.8 | 2.6 | 0.9 | 0.7 |
F | 61.4 | 57.6 | 56.6 | 52.5 | 47.3 | 42.3 | 40.1 | 25.2 | 10.8 | 6.6 | 3.3 | 0.9 | 0.3 | 0.2 |
P | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.014 | 0.076 | 0.356 | 0.634 | 0.746 |
1 | 熊秋林,肖红伟,程朋根,等.北京表层土壤重金属污染分布及大气沉降贡献[J].生态环境学报,2021,30(4):816-824. |
2 | Chen J, Tan M, Li Y,et al.Characteritics of trace elements and lead isotope ratios in PM2.5 from four sites in Shanghai[J].Journal of Hazardous Materials,2008,156:36-43. |
3 | Duzgorcn-Aydin N S.Sources and characteristics of lead pollution in the urban environment of Guangzhou[J].Science of the Total Environment,2007,385:182-195. |
4 | 吴龙华,张长波,章海波,等.铅稳定同位素在土壤污染物来源识别中的应用[J].环境科学,2009,30(1):227-230. |
5 | Tian H Z, Cheng K, Wang Y.Temporal and spatial variation characteristics of atmospheric emissions of Cd,Cr and Pb from coal in China[J].Atmospheric Environment,2012,50:157-163. |
6 | Wu Y, Streets D G, Wang S X,et al.Uncertainties in estimating mercury emissions from coal-fired power plants in China[J].Atmospheric Chemistry and Physics,2010,9(6):2937-2946. |
7 | Gupta A K, Dwivedi S, Sinha S,et al.Metal accumulation and growth performance of Phaseolus vulgaris grown in fly ash amended soil[J].Bioresource Technology,2007,98(3):3404-3407. |
8 | Manta D S, Angelone M, Bellanca A,et al.Heavy metals in urban soils: a case study from the city of Palermo (Sicily),Italy[J].Science of the Total Environment,2002,300:229-243. |
9 | Kizilkaya R, Askin T, Bayrakli B,et al.Microbiological characteristics of soils contaminated with heavy metals[J].European Journal of Soil Biology,2004,40:95-102. |
10 | Chen J L, Zheng C, Ruan J Z,et al.Cadmium bioavailability and accumulation in rice grain are controlled by pH and Ca in paddy soils with high geological background of transportation and deposition[J].Bulletin of Environmental Contamination and Toxicology,2021,106:92-98. |
11 | 张元明,王雪芹.荒漠地表生物土壤结皮形成与演替特征概述[J].生态学报,2010,30(16):4484-4492. |
12 | Rodriguez-Caballero E, Belnap J, Büdel B,et al.Dryland photoautotrophic soil surface communities endangered by global change[J].Nature Geoscience,2018,11(3):185-189. |
13 | Belnap J, Weber B, Büdel B.Biological soil crusts as an organizing principle in drylands[M]//Cham.Biological Soil Crusts:An Organizing Principle in Drylands.Switzerland:Springer International Publishing,2016:3-13. |
14 | Li X R, Zhou H Y, Wang P,et al.The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert,Northern China[J].Plant and Soil,2003,251(2):237-245. |
15 | Su Y G, Li X R, Zheng J G,et al.The effect of biological soil crusts of different successional stages and conditions on the germination of seeds of three desert plants[J].Journal of Arid Environments,2009,73:931-936. |
16 | 徐杰,敖艳青,张璟霞,等.沙地不同发育阶段的人工生物结皮对重金属的富集作用[J].生态学报,2012,32(23):7402-7410. |
17 | 赵芷玉,律泽,魏炜,等.佳乐麝香与镉污染对土壤微生物和酶活性的影响[J].农业环境科学学报,2021,40(8):1738-1745. |
18 | Hsu M J, Selvaraj K, Agoramoorthy G.Taiwan's industrial heavy metal pollution threatens terrestrial biota[J].Environmental Pollution,2006,143(2):327-334. |
19 | 腾应,黄昌勇,龙健,等.铜尾矿污染区土壤酶活性研究[J].应用生态学报,2003,14(11):1976-1980. |
20 | 周正虎,王传宽.微生物对分解底物碳氮磷化学计量的响应和调节机制[J].植物生态学报,2016,40(6):620-630. |
21 | Li X R, Zhang Y M, Zhao Y G.A study of biological soil crusts: recent development,trend and prospect[J].Advances in Earth Science,2009,24(1):11-24. |
22 | 邓杰文,石杨,李斌,等.微生物在沙化土壤修复中的应用研究进展[J].应用与环境生物学报,2022,28(5):1367-1374. |
23 | Zimmerman A R, Ahn M Y.Organovmineral-enzyme interaction and soil enzyme activity[M]//Shukla G,Varma A.Soil Enzymology.Berlin,Germany:Springer,2011:271-292. |
24 | Wang Z Q, Tian H X, Lu G N,et al.Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase[J].Ecotoxicology and Environmental Safety,2018,148:721-148728. |
25 | Tian H X, Zhao Y M, Megharaj M,et al.Arsenate inhibition on kinetic characteristics of alkaline phosphatase as influenced by pH[J].Ecological Indicators,2018,85:1101-1106. |
26 | 智静,傅泽强,陈燕.宁东能源(煤)化工基地物质流分析[J].干旱区资源与环境,2012,26(9):137-142. |
27 | 樊瑾,李诗瑶,杜雅仙,等.火电厂周边不同生物结皮细菌群落特征差异及其影响因素[J].应用生态学报,2021,32(11):4107-4118. |
28 | 关松荫.土壤酶及其研究方法[M].北京:中国农业科技出版社,1986:101-122. |
29 | 李倩,秦飞,季宏兵,等.北京市密云水库上游金矿区土壤重金属含量、来源及污染评价[J].农业环境科学学报,2013,32(12):2384-2394. |
30 | 邓霞,崔东,王兴磊,等.伊犁煤矿土壤重金属累积对土壤酶活性的影响[J].环境化学,2018,37(7):1554-1564. |
31 | 中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990. |
32 | 徐杰,敖艳青,张璟霞.生物结皮对沙地生态系统大气沉降重金属污染的指示[M].呼和浩特:内蒙古大学出版社,2012. |
33 | 姚宏佳,王宝荣,安韶山,等.黄土高原生物结皮形成过程中土壤胞外酶活性及其化学计量变化特征[J].干旱区研究,2022,39(2):456-468. |
34 | 张胜男,高海燕,闫德仁,等.沙漠生物土壤结皮演替对微生物群落结构和土壤酶活力的影响[J].中国沙漠,2023,43(3):178-187. |
35 | 柯善文,席亚丽,牟佳美,等.地衣生态功能研究进展[J].生态学杂志,2020,39(9):3138-3146. |
36 | 杨永胜,卜崇峰,高国雄.毛乌素沙地生物结皮对土壤温度的影响[J].干旱区研究,2012,29(2):352-359. |
37 | 孙福海,肖波,李胜龙,等.黄土高原不同发育阶段生物结皮的导水和持水特征[J].草业学报,2021,30(6):54-63. |
38 | 刘翔,周宏飞,刘昊,等.不同类型生物土壤结皮覆盖下风沙土的入渗特征及模拟[J].生态学报,2016,36(18):5820-5826. |
39 | 罗成科,张佳瑜,肖国举,等.宁东基地不同燃煤电厂周边土壤5种重金属元素污染特征及生态风险[J].生态环境学报,2018,27(7):1285-1291. |
40 | 赵彦敏.陕北黄土生物结皮种群特征及对土壤生物活性的影响[D].北京:北京林业大学,2014. |
41 | Zhao Y G, Xu M X, Belnap J.Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the Hilly Loess Plateau,China[J].Journal of Arid Environments,2010,74(10):1186-1191. |
42 | Elbert W, Weber B, Burrows S,et al.Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J].Nature Geoscience,2012,5(7):459-462. |
43 | 张国秀,赵允格,许明祥,等.黄土丘陵区生物结皮对土壤磷素有效性及碱性磷酸酶活性的影响[J].植物营养与肥料学报,2012,18(3):621-628. |
44 | Ghiloufi W, Seo J, Kim J,et al.Effects of biological soil crusts on enzyme activities and microbial community in soils of an arid ecosystem[J].Microbial Ecology,2019,77(1):201-216. |
45 | 安韶山,黄懿梅,郑粉莉.黄土丘陵草地土壤脲酶活性特征及其与土壤性质的关系[J].草地学报,2005,13(3):233-237. |
46 | Yang H Y, Liu C Z, Liu Y M,et al.Impact of human trampling on biological soil crusts determined by soil microbial biomass,enzyme activities and nematode communities in a desert ecosystem[J].European Journal of Soil Biology,2018,87:61-71. |
47 | Zhang B C, Zhou X B, Zhang Y M.Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert,Xinjiang[J].Journal of Arid Land,2015(1):101-109. |
48 | Belnap J.Nitrogen fixation in biological soil crusts from southeast Utah,USA[J].Biology and Fertility of Soils,2002,35:128-135. |
49 | 王攀,朱湾湾,樊瑾,等.宁夏燃煤电厂周围降水降尘中硫氮沉降特征研究[J].生态环境学报,2020,29(6):1189-1197. |
50 | Khan S, Cao Q, Hesham A E,et al.Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb[J].Journal of Environmental Sciences,2007,19(7):834-840. |
51 | Ciarkowska K, Sołek-Podwika K, Wieczorek J.Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area[J].Journal of Environmental Management,2014,132:250-256. |
52 | 王广昊,孔星杰,孙彩丽,等.铅锌废渣场周边土地利用方式转变对土壤胞外酶活性的影响[J].生态学杂志,2022,41(6):1166-1172. |
53 | 牛玉斌,樊瑾,李诗瑶,等.宁东能源工业基地表层土壤粒径分布、养分、重金属含量与大气降尘的关联性[J].水土保持通报,2020,40(4):91-99. |
[1] | Bingjie Jiao, Bingchang Zhang, Kang Zhao, Lixia Yan, Zhifang Wu. Promoting effect of biological soil crusts succession on soil nitrogen transformation and microbial activity in water-wind erosion crisscross region of Loess Plateau [J]. Journal of Desert Research, 2023, 43(4): 191-199. |
[2] | Shengnan Zhang, Haiyan Gao, Deren Yan, Haiguang Huang. Effects of desert biological soil crusts succession on microbial community structure and soil enzyme activities [J]. Journal of Desert Research, 2023, 43(3): 178-187. |
[3] | Hongfei Jia, Rongliang Jia, Xiuli Wu, Yun Zhao, Lichao Liu, Yanhong Gao, Haotian Yang, Tian Zhang. Effects of biocrust on soil swelling in arid desert [J]. Journal of Desert Research, 2023, 43(2): 28-36. |
[4] | Guangyu Hong, Xiaojiang Wang, Qingpu Su, Long Hai, Shaokun Wang, Xiaowei Gao, Yanyan Xu, Jingshan Zhou, Zhuofan Li, Zihao Li, Ercha Hu. Simulation of soil moisture and leakage characteristics of mobile dunes in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(2): 288-298. |
[5] | Xuying Bai, Yujie Wang, Yunqi Wang, Wenbin Yang, Tao Wang, Yiben Cheng. Changes and driving factors of water body area in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(2): 65-73. |
[6] | Yuzhe Yang, Dapeng Yue, Jingbo Zhao, Yiting Liu, Jianing Li, Tianyu Yang. Chroma characteristics and its paleoclimatic significance of L3 and S3 loess-paleosol in the southeast margin of Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(1): 176-186. |
[7] | Hongmei Liu, Haibing Wang, Kuan Li, Xiya Liu, Yuyan Ren, Yandong Zhang. Structure, benefits and behavior of farmers and herdsmen of the Kulun ecological economic circle in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(1): 48-57. |
[8] | Xiaohan Chen, Yongsheng Wu, Chunxing Hai. Effects of surface dew under different types of sand-fixing shrubs in the southern margin of Mu Us Sandy Land, Northern China [J]. Journal of Desert Research, 2023, 43(1): 83-95. |
[9] | Guangyu Hong, Xiaojiang Wang, Tieshan Liu, Hailong, Zhenting Wu, Huercha, Xiaowei Gao, Haifeng Yang, Zhuofan Li, Zihao Li, Siqin, Lejun Wang. Applicability of Hydrus-1D Model in simulating the soil moisture in Hedysarum leave in Mu Us Sandy Land, China [J]. Journal of Desert Research, 2022, 42(6): 233-242. |
[10] | Ling Tao, Hanru Ren, Yilei Zhou, Jun Ren. Effects of water and nutrient supply on growth of moss crust mixed with attapulgite [J]. Journal of Desert Research, 2022, 42(6): 288-294. |
[11] | Fusen Nan, Zongxing Li, Xiaoping Zhang, Qiao Cui, Yuchen Li, Anle Yang, Xueting Xiong. Spatial variation of ecological stoichiometry characteristics of hilly soil in Lanzhou section of Yellow River north shore [J]. Journal of Desert Research, 2022, 42(5): 167-176. |
[12] | Meng Wang, Junfeng Lu, Peng Fu, Zhibao Dong. Characteristics of soil nutrients and grain size around Badain Jaran Desert [J]. Journal of Desert Research, 2022, 42(5): 232-244. |
[13] | Lixia Gu, Ping Lv, Fang Ma, Guoxiang Chen, Zhun Liang, Mingjing Xu, Ying Yang. Drift potential characteristics of Mu Us Sandy Land calculated with different data sources [J]. Journal of Desert Research, 2022, 42(5): 54-62. |
[14] | Xinying Liu, Ming Jin, Fan Yang, Yapeng Ma, Hui Liu, Xiaoyun Sun, Dunsheng Xia. A preliminary study of environmental changes since middle Holocene and its impacts on the evolution of civilization in the eastern Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(5): 92-100. |
[15] | Changsheng Li, Zhishan Zhang, Jinlin Zhang, Xiufeng Zhang, Bingxin Xu, Yafei Shi, Jianqiang Huo. Transition characteristics of soil properties in desert-oasis [J]. Journal of Desert Research, 2022, 42(4): 209-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech