Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (4): 139-152.DOI: 10.7522/j.issn.1000-694X.2025.00116
Weiguo Wang(), Huan Xie, Guoqing Feng, Shuzhen Jia
Received:
2025-05-15
Revised:
2025-07-10
Online:
2025-07-20
Published:
2025-08-18
CLC Number:
Weiguo Wang, Huan Xie, Guoqing Feng, Shuzhen Jia. Ecological environment quality and driving forces in the Beijing-Tianjin Sandstorm Source Control Project area[J]. Journal of Desert Research, 2025, 45(4): 139-152.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00116
指标 | 时间(年份) | 时空分辨率 | 数据名 | 数据来源 |
---|---|---|---|---|
NDVI | 2000—2020 | 500 m | MOD09A1 | GEE |
WET | ||||
NDBSI | ||||
LST | 500 m | MOD11A2 | ||
人口 | 1年,1 000 m | LandScan Global | 美国橡树岭实验室 | |
GDP | 2000 | 5年,1 000 m | 中国GDP空间分布公里网格数据集 | 中国科学院 资源环境科学 与数据中心 |
土地利用 | 2005 | 5年,30 m | 中国多时期土地利用遥感监测数据集 | |
2010 | ||||
2015 | ||||
2020 | ||||
年均气温 | 2000—2020 | 1年,1 000 m | 中国气象要素年度空间插值数据集 | |
年降水量 | 1年,1 000 m | |||
NPP | 5年,500 m | MOD17A3 | 美国地质调查局 | |
高程 | — | 30 m | ASTER GDEM 30 m分辨率数字高程数据 | 地理空间数据云平台 |
土壤有机质含量 | 2023 | 1000 m | HWSD | 联合国粮农组织 |
Table 1 Basic information of data sources
指标 | 时间(年份) | 时空分辨率 | 数据名 | 数据来源 |
---|---|---|---|---|
NDVI | 2000—2020 | 500 m | MOD09A1 | GEE |
WET | ||||
NDBSI | ||||
LST | 500 m | MOD11A2 | ||
人口 | 1年,1 000 m | LandScan Global | 美国橡树岭实验室 | |
GDP | 2000 | 5年,1 000 m | 中国GDP空间分布公里网格数据集 | 中国科学院 资源环境科学 与数据中心 |
土地利用 | 2005 | 5年,30 m | 中国多时期土地利用遥感监测数据集 | |
2010 | ||||
2015 | ||||
2020 | ||||
年均气温 | 2000—2020 | 1年,1 000 m | 中国气象要素年度空间插值数据集 | |
年降水量 | 1年,1 000 m | |||
NPP | 5年,500 m | MOD17A3 | 美国地质调查局 | |
高程 | — | 30 m | ASTER GDEM 30 m分辨率数字高程数据 | 地理空间数据云平台 |
土壤有机质含量 | 2023 | 1000 m | HWSD | 联合国粮农组织 |
年份 | NDVI | LST | WET | NDBSI | 特征值 | 贡献率/% | |
---|---|---|---|---|---|---|---|
2000 | PC1 | 0.56 | -0.42 | 0.46 | -0.55 | 0.16 | 84 |
PC2 | 0.51 | -0.15 | -0.84 | -0.07 | 0.02 | 9 | |
PC3 | -0.38 | -0.89 | -0.08 | 0.23 | 0.01 | 5 | |
PC4 | 0.54 | -0.04 | 0.27 | 0.80 | 0.00 | 2 | |
2005 | PC1 | 0.55 | -0.40 | 0.51 | -0.52 | 0.22 | 91 |
PC2 | 0.37 | -0.38 | -0.83 | -0.13 | 0.01 | 5 | |
PC3 | -0.33 | -0.82 | 0.16 | 0.44 | 0.01 | 3 | |
PC4 | 0.67 | 0.14 | 0.12 | 0.72 | 0.00 | 1 | |
2010 | PC1 | 0.55 | -0.41 | 0.51 | -0.52 | 0.20 | 90 |
PC2 | 0.39 | -0.30 | -0.85 | -0.18 | 0.01 | 5 | |
PC3 | -0.23 | -0.83 | 0.08 | 0.49 | 0.01 | 3 | |
PC4 | 0.70 | 0.21 | 0.11 | 0.67 | 0.00 | 2 | |
2015 | PC1 | 0.56 | -0.42 | 0.49 | -0.53 | 0.22 | 89 |
PC2 | 0.34 | -0.39 | -0.85 | -0.11 | 0.01 | 6 | |
PC3 | -0.17 | -0.75 | 0.20 | 0.61 | 0.01 | 3 | |
PC4 | -0.74 | -0.33 | -0.07 | -0.58 | 0.00 | 2 | |
2020 | PC1 | 0.56 | -0.39 | 0.50 | -0.53 | 0.21 | 90 |
PC2 | -0.33 | 0.56 | 0.76 | -0.06 | 0.01 | 5 | |
PC3 | -0.27 | -0.65 | 0.41 | 0.58 | 0.01 | 4 | |
PC4 | -0.71 | -0.33 | -0.12 | -0.62 | 0.00 | 1 |
Table 2 Results of PCA of four indexes in the BTSSCPA at the year of 2000, 2005, 2010, 2015 and 2020
年份 | NDVI | LST | WET | NDBSI | 特征值 | 贡献率/% | |
---|---|---|---|---|---|---|---|
2000 | PC1 | 0.56 | -0.42 | 0.46 | -0.55 | 0.16 | 84 |
PC2 | 0.51 | -0.15 | -0.84 | -0.07 | 0.02 | 9 | |
PC3 | -0.38 | -0.89 | -0.08 | 0.23 | 0.01 | 5 | |
PC4 | 0.54 | -0.04 | 0.27 | 0.80 | 0.00 | 2 | |
2005 | PC1 | 0.55 | -0.40 | 0.51 | -0.52 | 0.22 | 91 |
PC2 | 0.37 | -0.38 | -0.83 | -0.13 | 0.01 | 5 | |
PC3 | -0.33 | -0.82 | 0.16 | 0.44 | 0.01 | 3 | |
PC4 | 0.67 | 0.14 | 0.12 | 0.72 | 0.00 | 1 | |
2010 | PC1 | 0.55 | -0.41 | 0.51 | -0.52 | 0.20 | 90 |
PC2 | 0.39 | -0.30 | -0.85 | -0.18 | 0.01 | 5 | |
PC3 | -0.23 | -0.83 | 0.08 | 0.49 | 0.01 | 3 | |
PC4 | 0.70 | 0.21 | 0.11 | 0.67 | 0.00 | 2 | |
2015 | PC1 | 0.56 | -0.42 | 0.49 | -0.53 | 0.22 | 89 |
PC2 | 0.34 | -0.39 | -0.85 | -0.11 | 0.01 | 6 | |
PC3 | -0.17 | -0.75 | 0.20 | 0.61 | 0.01 | 3 | |
PC4 | -0.74 | -0.33 | -0.07 | -0.58 | 0.00 | 2 | |
2020 | PC1 | 0.56 | -0.39 | 0.50 | -0.53 | 0.21 | 90 |
PC2 | -0.33 | 0.56 | 0.76 | -0.06 | 0.01 | 5 | |
PC3 | -0.27 | -0.65 | 0.41 | 0.58 | 0.01 | 4 | |
PC4 | -0.71 | -0.33 | -0.12 | -0.62 | 0.00 | 1 |
年份 | 差 | 较差 | 一般 | 良 | 优 | |||||
---|---|---|---|---|---|---|---|---|---|---|
面积 /万km2 | 比例 /% | 面积 /万km2 | 比例 /% | 面积 /万km2 | 比例/% | 面积 /万km2 | 比例/% | 面积 /万km2 | 比例 /% | |
2000 | 22.9 | 31.4 | 24.0 | 32.9 | 14.6 | 20.0 | 7.1 | 9.7 | 4.4 | 6.0 |
2005 | 21.9 | 30.0 | 18.8 | 25.8 | 16.5 | 22.6 | 8.9 | 12.2 | 6.9 | 9.4 |
2010 | 19.5 | 26.7 | 25.2 | 34.5 | 14.1 | 19.3 | 7.9 | 10.8 | 6.3 | 8.7 |
2015 | 19.6 | 26.8 | 20.3 | 27.8 | 16.4 | 22.5 | 9.3 | 12.7 | 7.4 | 10.2 |
2020 | 15.7 | 21.5 | 19.5 | 26.7 | 18.8 | 25.8 | 11.0 | 15.1 | 8.0 | 10.9 |
Table 3 Area and ratio on the different classes of ecological quality in the BTSSCPA from 2000 to 2020
年份 | 差 | 较差 | 一般 | 良 | 优 | |||||
---|---|---|---|---|---|---|---|---|---|---|
面积 /万km2 | 比例 /% | 面积 /万km2 | 比例 /% | 面积 /万km2 | 比例/% | 面积 /万km2 | 比例/% | 面积 /万km2 | 比例 /% | |
2000 | 22.9 | 31.4 | 24.0 | 32.9 | 14.6 | 20.0 | 7.1 | 9.7 | 4.4 | 6.0 |
2005 | 21.9 | 30.0 | 18.8 | 25.8 | 16.5 | 22.6 | 8.9 | 12.2 | 6.9 | 9.4 |
2010 | 19.5 | 26.7 | 25.2 | 34.5 | 14.1 | 19.3 | 7.9 | 10.8 | 6.3 | 8.7 |
2015 | 19.6 | 26.8 | 20.3 | 27.8 | 16.4 | 22.5 | 9.3 | 12.7 | 7.4 | 10.2 |
2020 | 15.7 | 21.5 | 19.5 | 26.7 | 18.8 | 25.8 | 11.0 | 15.1 | 8.0 | 10.9 |
探测指标 | 2000年 | 2010年 | 2020年 | 2000—2020年平均 | ||||
---|---|---|---|---|---|---|---|---|
q值 | 排序 | q值 | 排序 | q值 | 排序 | q值 | 排序 | |
年降水量 | 0.593 | 1 | 0.574 | 2 | 0.502 | 2 | 0.556 | 2 |
NPP | 0.567 | 2 | 0.796 | 1 | 0.825 | 1 | 0.729 | 1 |
生境质量指数 | 0.421 | 3 | 0.406 | 4 | 0.242 | 6 | 0.356 | 4 |
坡度 | 0.355 | 4 | 0.376 | 5 | 0.326 | 4 | 0.352 | 5 |
土地利用强度 | 0.341 | 5 | 0.410 | 3 | 0.376 | 3 | 0.376 | 3 |
GDP | 0.328 | 6 | 0.279 | 6 | 0.267 | 5 | 0.291 | 6 |
水土流失指数 | 0.247 | 7 | 0.262 | 7 | 0.241 | 7 | 0.250 | 7 |
人口密度 | 0.239 | 8 | 0.154 | 10 | 0.143 | 9 | 0.179 | 9 |
土壤有机质含量 | 0.218 | 9 | 0.239 | 8 | 0.231 | 8 | 0.229 | 8 |
高程 | 0.151 | 10 | 0.156 | 9 | 0.134 | 10 | 0.147 | 10 |
年均气温 | 0.063 | 11 | 0.079 | 11 | 0.072 | 11 | 0.071 | 11 |
Table 4 Area and ratio on the different classes of ecological quality in the BTSSCPA from 2000 to 2020
探测指标 | 2000年 | 2010年 | 2020年 | 2000—2020年平均 | ||||
---|---|---|---|---|---|---|---|---|
q值 | 排序 | q值 | 排序 | q值 | 排序 | q值 | 排序 | |
年降水量 | 0.593 | 1 | 0.574 | 2 | 0.502 | 2 | 0.556 | 2 |
NPP | 0.567 | 2 | 0.796 | 1 | 0.825 | 1 | 0.729 | 1 |
生境质量指数 | 0.421 | 3 | 0.406 | 4 | 0.242 | 6 | 0.356 | 4 |
坡度 | 0.355 | 4 | 0.376 | 5 | 0.326 | 4 | 0.352 | 5 |
土地利用强度 | 0.341 | 5 | 0.410 | 3 | 0.376 | 3 | 0.376 | 3 |
GDP | 0.328 | 6 | 0.279 | 6 | 0.267 | 5 | 0.291 | 6 |
水土流失指数 | 0.247 | 7 | 0.262 | 7 | 0.241 | 7 | 0.250 | 7 |
人口密度 | 0.239 | 8 | 0.154 | 10 | 0.143 | 9 | 0.179 | 9 |
土壤有机质含量 | 0.218 | 9 | 0.239 | 8 | 0.231 | 8 | 0.229 | 8 |
高程 | 0.151 | 10 | 0.156 | 9 | 0.134 | 10 | 0.147 | 10 |
年均气温 | 0.063 | 11 | 0.079 | 11 | 0.072 | 11 | 0.071 | 11 |
[1] | 雷燕慧,丁国栋,李梓萌,等.京津风沙源治理工程区土地利用/覆盖变化及生态系统服务价值响应[J].中国沙漠,2021,41(6):29-40. |
[2] | 崔晓,赵媛媛,丁国栋,等.京津风沙源治理工程区植被对沙尘天气的时空影响[J].农业工程学报,2018,34(12):171-179. |
[3] | 黄麟,吴丹,孙朝阳.基于规划目标的京津风沙源治理区生态保护与修复效应[J].生态学报,2020,40(6):1923-1932. |
[4] | 章程焱,杨少康,董晓华,等.基于RSEI指数的长江上游流域生态环境质量时空演变及影响因子研究[J].水土保持研究,2023,30(1):356-363. |
[5] | 徐涵秋.城市遥感生态指数的创建及其应用[J].生态学报,2014,33(24):7853-7862. |
[6] | 徐涵秋.区域生态环境变化的遥感评价指数[J].中国环境科学,2013,33(5):889-897. |
[7] | Xiong Y, Xu W, Lu N,et al.Assessment of spatial-temporal changes of ecological environment quality based on RSEI and GEE:a case study in Erhai Lake Basin,Yunnan Province,China[J].Ecological Indicators,2021,125:107518. |
[8] | Chen Z, Chen R, Guo Q,et al.Spatiotemporal change of urban ecologic environment quality based on RSEI:taking Meizhou City,China as an example[J].Sustainability,2022,14(20):13424. |
[9] | 邵全琴,刘树超,宁佳,等.2000-2019年中国重大生态工程生态效益遥感评估[J].地理学报,2022,77(9):2133-2153. |
[10] | 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595. |
[11] | 徐勇,郑梓聪,曹泳茵,等.4种典型人口空间化产品精度的比较评价[J].广州大学学报(自然科学版),2023,22(4):20-28. |
[12] | 汤从沧,李巧,陶洪飞,等.基于改进遥感生态指数模型的塔里木河流域生态环境质量评价[J].环境科学,2025,46(7):4485-4498. |
[13] | Xu Y, Yang X, Xing X,et al.Coupling eco-environmental quality and ecosystem services to delineate priority ecological reserves-a case study in the Yellow River Basin[J].Journal of Environmental Management,2024,365:121645. |
[14] | 岳奕帆,赵文智,刘任涛,等.宁夏荒漠草原带生态环境质量时空变化及驱动机制研究[J].生态学报,2024,44(20):9067-9080. |
[15] | 薛桦,刘萍.基于RSEI的黄河中游地区生态环境质量时空演化特征及驱动因素:以延安市为例[J].水土保持研究,2024,31(1):373-384. |
[16] | 崔亚婷,李嬛,郑龙啸,等.基于RSEI的黄河上游流域生态环境质量变化分析[J].中国沙漠,2023,43(3):107-118. |
[17] | Hall L, Krausman P, Morrison M.The habitat concept and a plea for standard technology[J].Wildlife Society Bulletin,1997,25(1):173-182. |
[18] | 孙菲菲,张增祥,左丽君,等.土地利用强度研究进展、瓶颈问题与前景展望[J].草业科学,2020,37(7):1259-1271. |
[19] | Liu M, Dong X, Wang X,et al.The trade-offs/synergies and their spatial-temporal characteristics between ecosystem services and human well-being linked to land-use change in the Capital Region of China[J].Land,2022,11(5):749. |
[20] | 郭泽呈,魏伟,石培基,等.中国西北干旱区土地沙漠化敏感性时空格局[J].地理学报,2020,75(9):1948-1965. |
[21] | Renard K G.Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE)[M].Washington DC,USA:United States Government Printing,1997:118-141. |
[22] | 章文波.不同类型雨量资料估算降雨侵蚀力[J].资源科学,2003,25(1):35-41. |
[23] | Williams J R.EPIC-erosion/productivity impact calculator:1.model documentation[J].Technical Bulletin-United States Department of Agriculture,1990,4(4):206-207. |
[24] | Desmet P J J, Govers G.A GIS procedure for automatically calculating the USLELS factor on topographically complex landscape units[J].Journal of Soil and Water Conservation,1996,51(5):427-433. |
[25] | 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134. |
[26] | 袁静芳,周海丽,张星烁,等.京津风沙源治理区植被固碳能力估算及归因分析[J].生态学报,2024,44(15):6731-6743. |
[27] | Xing X, Yang X, Guo J,et al.Response of ecosystem services in Beijing-Tianjin Sandstorm Source Control Project to differing engineering measures scenarios[J].Journal of Cleaner Production,2023,384:135573. |
[28] | 赵恒谦,刘轩绮,刘哿,等.京津风沙源区NPP时空变化及其对治理工程实施的响应[J].生态学报,2024,44(6):2406-2419. |
[29] | Niu L, Shao Q, Ning J,et al.The assessment of ecological restoration effects on Beijing-Tianjin Sandstorm Source Control Project area during 2000-2019[J].Ecological Engineering,2023,186:106831. |
[30] | Li C, Gao Z, Sun B,et al.Ecological restoration effects of the Beijing-Tianjin Sandstorm Source Control Project in China since 2000[J].Ecological Indicators,2023,146:109782. |
[31] | 吴波.京津风沙源治理工程助力生态建设高质量发展[J].科学通报,2023,68(11):1284-1285. |
[32] | 李晓松,张磊,姬翠翠,等.2000-2018年京津风沙源沙化土地时空动态与归因分析[J].科学通报,2023,68(11):1343-1355. |
[33] | 赵晓萌,程宏,蒋宁,等.京津风沙源土壤风蚀时空格局及其演化[J].科学通报,2023,68():238-253. |
[34] | 迟文峰,匡文慧,贾静,等.京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J].遥感技术与应用,2018,33(5):965-974. |
[35] | 辛会超,郭玮,王贺封.基于GEE和RSEI的京津冀地区生态环境质量时序动态评估[J].西北林学院学报,2024,39(2):106-114. |
[36] | 杨泽康,田佳,李万源,等.黄河流域生态环境质量时空格局与演变趋势[J].生态学报,2021,41(19):7627-7636. |
[37] | 孟琪,武志涛,杜自强,等.京津风沙源区不同分区植被覆盖度变化及归因分析[J].应用生态学报,2021,32(8):2895-2905. |
[38] | 张彪,王爽,李庆旭,等.京津风沙源治理工程区水源涵养功能时空变化分析[J].生态学报,2021,41(19):7530-7541. |
[39] | Yue Y, Shi P, Zou X,et al.The measurement of wind erosion through field survey and remote sensing:a case study of the Mu Us Desert, China[J].Natural Hazards,2015,76(3):1497-1514. |
[40] | 武旭,王勃砚,任伟,等.2000-2022年黄河流域甘肃段生态环境质量与影响因素[J].应用生态学报,2025,36(2):353-364. |
[1] | Bingbing Chen, Yingchun Ge, Zhonghang Song, Xiangnan Wu, Yu Ai, Ying Yang, Shengtang Wang, Yushuo Liu. Spatio-temporal evolution and driving forces of ecological quality in Qilian Mountains [J]. Journal of Desert Research, 2024, 44(6): 258-267. |
[2] | Wanfeng Su, Guangzhao Han, Deli Ye, Guangchao Cao. Remote sensing evaluation and driving force analysis of ecological environment in Gonghe Basin [J]. Journal of Desert Research, 2023, 43(5): 74-84. |
[3] | Yating Cui, Huan Li, Longxiao Zheng, Mengquan Wu. Study of ecological environmental quality changes in the upper Yellow River basin based on remote sensing ecological index [J]. Journal of Desert Research, 2023, 43(3): 107-118. |
[4] | Kailu Liu, Xinping Wu, Yongqiang Liu, Mamtimin Ali, Fan Yang, Qing He. Estimation of hourly surface net radiation in Taklimakan Desert based on multi-source remote sensing data and reanalysis data [J]. Journal of Desert Research, 2021, 41(5): 51-61. |
[5] | Haowei Jia, Changzhen Yan, Xuegang Xing, Jiali Xie, Kun Feng. Evaluation of ecological environment in the Dulan County based on the Modified Remote Sensing Ecological Index Model [J]. Journal of Desert Research, 2021, 41(2): 181-190. |
[6] | Lei Wu, Changbin Li, Liuming Wang, Xuhong Xie, Yuan Zhang, Jianmei Wei. Division and application of desert-oasis system in arid Northwest China based on ESA-LUC and MODIS-NDVI [J]. Journal of Desert Research, 2020, 40(6): 139-150. |
[7] | Li Zhipeng, Cao Xiaoming, Ding Jie, Feng Yiming. Annual Desertification during 2001-2017 in China Based on MODIS Satellite Images [J]. Journal of Desert Research, 2019, 39(6): 135-140. |
[8] | Zhang Jiaqi, Zhang Bo, Ma Bin, Cao Bo, Liang Jingjing, Ma Shangqian. Spatial-temporal Variation of NDVI in Sanjiang Plain and Its Response to Climate Change [J]. Journal of Desert Research, 2019, 39(3): 206-213. |
[9] | Reyilai Kadeer, Yusufu Maimaiti, Yusufujiang Rusuli, Adilai Wufu, Aizezitiyuemaier Maimaiti, Jiang Hong. Spatio-temporal Variation of Land Surface Temperature in the Ili River Valley during 2001-2014 [J]. Journal of Desert Research, 2018, 38(3): 637-644. |
[10] | Li Huoqing, Wu Xinping, Ali Mamtimin, Huo Wen, Yang Xinghua, Yang Fan, He Qing, Liu Yongqiang. Estimating the Surface Broadband Emissivity of Deserts in Xinjiangbase on MODIS and FTIR Data [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(3): 523-529. |
[11] | Sha Sha, Guo Ni, Li Yaohui, Hu Die, Wang Lijuan. Applicability of TVDI in Monitoring Drought in Longdong Area of Gansu, China [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(1): 132-139. |
[12] | Kang Wenping, Liu Shulin, Duan Hanchen. Monitoring and Spatial-temporal Changes Analysis of AeolianDesertified Lands Based on MODIS Data: A case study on the middle-west part of Inner Mongolia, China [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(2): 307-318. |
[13] | Bianduo, Yang Xiuhai, Pubuciren, Luobu, Jilv, Liu Kuijun. Spatial and Temporal Pattern of NPP and Its Relationship with Climate Factors in Tibet, China [J]. JOURNAL OF DESERT RESEARCH, 2015, 35(3): 830-836. |
[14] | Deng Yulin, Tashpolat Tiyip, Jiang Hongtao, Zhang Fei, Mamat Sawut, Nurmamatjan Obulkasim. NDVI at a Vertical Gradient in the Ebinur Lake Basin, Xinjiang, China [J]. JOURNAL OF DESERT RESEARCH, 2015, 35(2): 508-513. |
[15] | Jiang Hongtao, Tashpolat·Tiyip, Ardak·Kelimu, Zhang Fei, Mamat·Sawut, Wu Xuemei. Responses of NDVI to the Variation of Precipitation and Temperature in the Ebinur Lake Basin [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(6): 1678-1684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech