Journal of Desert Research ›› 2022, Vol. 42 ›› Issue (2): 44-53.DOI: 10.7522/j.issn.1000-694X.2021.00108
Previous Articles Next Articles
Lingge Wang1(), Rui Zhu1(
), Zexia Chen1, Zhenliang Yin2, Rui Lu1, Chunshuang Fang1
Received:
2021-07-13
Revised:
2021-08-19
Online:
2022-03-20
Published:
2022-03-30
Contact:
Rui Zhu
CLC Number:
Lingge Wang, Rui Zhu, Zexia Chen, Zhenliang Yin, Rui Lu, Chunshuang Fang. Coupling effect of water-soil resources in Hexi Area of Gansu,China in 2000-2019[J]. Journal of Desert Research, 2022, 42(2): 44-53.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2021.00108
子系统 | 指标类别 | 指标名称 | 指标单位 | 指标类型 | 指标权重 |
---|---|---|---|---|---|
土地资源系统 | 土地资源禀赋 | 耕地比例 | % | + | 0.113149 |
人均耕地面积 | hm2 | + | 0.080497 | ||
土地资源利用 | 复种指数 | — | + | 0.055396 | |
人均农业总产值 | 万元 | + | 0.048031 | ||
地均农业总产值 | 万元·hm-2 | + | 0.053585 | ||
地均粮食产量 | t·hm-2 | + | 0.055931 | ||
农业人均GDP | 元 | + | 0.058808 | ||
水资源系统 | 水资源禀赋 | 降水资源总量 | 亿m3 | + | 0.052527 |
水资源总量 | 亿m3 | + | 0.081521 | ||
人均水资源量 | m3 | + | 0.071136 | ||
地均水资源量 | m3·hm-2 | + | 0.068958 | ||
产水系数 | % | + | 0.020621 | ||
产水模数 | 万m3·hm-2 | + | 0.025118 | ||
水资源利用 | 广义水土资源匹配系数 | — | + | 0.051239 | |
水资源开发利用率 | % | + | 0.052814 | ||
农业用水比例 | % | - | 0.045069 | ||
工业用水比例 | % | - | 0.013450 | ||
生活用水比例 | % | - | 0.029646 | ||
生态用水比例 | % | - | 0.022506 |
Table 1 Coupling coordination degree evaluation index system
子系统 | 指标类别 | 指标名称 | 指标单位 | 指标类型 | 指标权重 |
---|---|---|---|---|---|
土地资源系统 | 土地资源禀赋 | 耕地比例 | % | + | 0.113149 |
人均耕地面积 | hm2 | + | 0.080497 | ||
土地资源利用 | 复种指数 | — | + | 0.055396 | |
人均农业总产值 | 万元 | + | 0.048031 | ||
地均农业总产值 | 万元·hm-2 | + | 0.053585 | ||
地均粮食产量 | t·hm-2 | + | 0.055931 | ||
农业人均GDP | 元 | + | 0.058808 | ||
水资源系统 | 水资源禀赋 | 降水资源总量 | 亿m3 | + | 0.052527 |
水资源总量 | 亿m3 | + | 0.081521 | ||
人均水资源量 | m3 | + | 0.071136 | ||
地均水资源量 | m3·hm-2 | + | 0.068958 | ||
产水系数 | % | + | 0.020621 | ||
产水模数 | 万m3·hm-2 | + | 0.025118 | ||
水资源利用 | 广义水土资源匹配系数 | — | + | 0.051239 | |
水资源开发利用率 | % | + | 0.052814 | ||
农业用水比例 | % | - | 0.045069 | ||
工业用水比例 | % | - | 0.013450 | ||
生活用水比例 | % | - | 0.029646 | ||
生态用水比例 | % | - | 0.022506 |
协调程度 | 耦合协调度 | 耦合协调类型 |
---|---|---|
协调型 | (0.90, 1.00] | 极度协调 |
(0.80, 0.90] | 优质协调 | |
(0.70, 0.80] | 良好协调 | |
(0.60, 0.70] | 中度协调 | |
过渡型 | (0.55, 0.60] | 初级协调 |
(0.50, 0.55] | 基本协调 | |
(0.45, 0.50] | 勉强协调 | |
(0.40, 0.45] | 濒临失调 | |
失调型 | (0.30, 0.40] | 轻度失调 |
(0.20, 0.30] | 中度失调 | |
(0.10, 0.20] | 严重失调 | |
(0, 0.10] | 极度失调 |
Table 2 Classification system and criteria for coupling evaluation of water-soil resources
协调程度 | 耦合协调度 | 耦合协调类型 |
---|---|---|
协调型 | (0.90, 1.00] | 极度协调 |
(0.80, 0.90] | 优质协调 | |
(0.70, 0.80] | 良好协调 | |
(0.60, 0.70] | 中度协调 | |
过渡型 | (0.55, 0.60] | 初级协调 |
(0.50, 0.55] | 基本协调 | |
(0.45, 0.50] | 勉强协调 | |
(0.40, 0.45] | 濒临失调 | |
失调型 | (0.30, 0.40] | 轻度失调 |
(0.20, 0.30] | 中度失调 | |
(0.10, 0.20] | 严重失调 | |
(0, 0.10] | 极度失调 |
年份 | 耦合度 | 协调度 | 综合指数 | 耦合协调类型 | ||
---|---|---|---|---|---|---|
2000 | 0.11443 | 0.270379 | 0.907490 | 0.192406 | 0.4133533 | 濒临失调 |
2001 | 0.09952 | 0.231041 | 0.903989 | 0.165282 | 0.3825275 | 轻度失调 |
2002 | 0.10176 | 0.282421 | 0.870822 | 0.192090 | 0.4024035 | 濒临失调 |
2003 | 0.07421 | 0.276906 | 0.777666 | 0.175556 | 0.3604346 | 轻度失调 |
2004 | 0.08258 | 0.231153 | 0.866462 | 0.156866 | 0.3608177 | 轻度失调 |
2005 | 0.12269 | 0.262505 | 0.919047 | 0.192597 | 0.4194203 | 濒临失调 |
2006 | 0.13071 | 0.262140 | 0.930914 | 0.196424 | 0.4262491 | 濒临失调 |
2007 | 0.08898 | 0.309973 | 0.829754 | 0.199477 | 0.4043660 | 濒临失调 |
2008 | 0.14876 | 0.181712 | 0.978574 | 0.165237 | 0.4014598 | 濒临失调 |
2009 | 0.16036 | 0.192938 | 0.980173 | 0.176647 | 0.4146316 | 濒临失调 |
2010 | 0.19475 | 0.242923 | 0.972107 | 0.218839 | 0.4589733 | 勉强协调 |
2011 | 0.15322 | 0.206902 | 0.987459 | 0.180058 | 0.4194179 | 濒临失调 |
2012 | 0.19088 | 0.258178 | 0.972654 | 0.224527 | 0.4654537 | 勉强协调 |
2013 | 0.21442 | 0.192470 | 0.996152 | 0.203444 | 0.4463752 | 濒临失调 |
2014 | 0.21261 | 0.227413 | 0.978708 | 0.220011 | 0.4631376 | 勉强协调 |
2015 | 0.21303 | 0.220861 | 0.995545 | 0.216947 | 0.4632473 | 勉强协调 |
2016 | 0.22761 | 0.281134 | 0.983276 | 0.254373 | 0.4984242 | 勉强协调 |
2017 | 0.23190 | 0.284580 | 0.983824 | 0.258240 | 0.5028473 | 基本协调 |
2018 | 0.35422 | 0.238312 | 0.975242 | 0.296264 | 0.5369644 | 基本协调 |
2019 | 0.40042 | 0.318490 | 0.981808 | 0.359456 | 0.5934378 | 初级协调 |
Table 3 Comprehensive coupling coordination index of water-soil resources in five cities of Hexi Corridor
年份 | 耦合度 | 协调度 | 综合指数 | 耦合协调类型 | ||
---|---|---|---|---|---|---|
2000 | 0.11443 | 0.270379 | 0.907490 | 0.192406 | 0.4133533 | 濒临失调 |
2001 | 0.09952 | 0.231041 | 0.903989 | 0.165282 | 0.3825275 | 轻度失调 |
2002 | 0.10176 | 0.282421 | 0.870822 | 0.192090 | 0.4024035 | 濒临失调 |
2003 | 0.07421 | 0.276906 | 0.777666 | 0.175556 | 0.3604346 | 轻度失调 |
2004 | 0.08258 | 0.231153 | 0.866462 | 0.156866 | 0.3608177 | 轻度失调 |
2005 | 0.12269 | 0.262505 | 0.919047 | 0.192597 | 0.4194203 | 濒临失调 |
2006 | 0.13071 | 0.262140 | 0.930914 | 0.196424 | 0.4262491 | 濒临失调 |
2007 | 0.08898 | 0.309973 | 0.829754 | 0.199477 | 0.4043660 | 濒临失调 |
2008 | 0.14876 | 0.181712 | 0.978574 | 0.165237 | 0.4014598 | 濒临失调 |
2009 | 0.16036 | 0.192938 | 0.980173 | 0.176647 | 0.4146316 | 濒临失调 |
2010 | 0.19475 | 0.242923 | 0.972107 | 0.218839 | 0.4589733 | 勉强协调 |
2011 | 0.15322 | 0.206902 | 0.987459 | 0.180058 | 0.4194179 | 濒临失调 |
2012 | 0.19088 | 0.258178 | 0.972654 | 0.224527 | 0.4654537 | 勉强协调 |
2013 | 0.21442 | 0.192470 | 0.996152 | 0.203444 | 0.4463752 | 濒临失调 |
2014 | 0.21261 | 0.227413 | 0.978708 | 0.220011 | 0.4631376 | 勉强协调 |
2015 | 0.21303 | 0.220861 | 0.995545 | 0.216947 | 0.4632473 | 勉强协调 |
2016 | 0.22761 | 0.281134 | 0.983276 | 0.254373 | 0.4984242 | 勉强协调 |
2017 | 0.23190 | 0.284580 | 0.983824 | 0.258240 | 0.5028473 | 基本协调 |
2018 | 0.35422 | 0.238312 | 0.975242 | 0.296264 | 0.5369644 | 基本协调 |
2019 | 0.40042 | 0.318490 | 0.981808 | 0.359456 | 0.5934378 | 初级协调 |
年份 | 疏勒河 | 黑河 | 石羊河 | 年份 | 疏勒河 | 黑河 | 石羊河 |
---|---|---|---|---|---|---|---|
2000 | 2.23837 | 0.78676 | 0.59485 | 2010 | 1.81459 | 0.76615 | 0.65747 |
2001 | 1.61847 | 0.41249 | 0.58579 | 2011 | 1.41302 | 0.63465 | 0.60420 |
2002 | 2.25140 | 0.67357 | 0.58451 | 2012 | 1.36804 | 0.64520 | 0.70352 |
2003 | 1.81402 | 0.54865 | 0.96796 | 2013 | 1.52588 | 0.50361 | 0.39359 |
2004 | 1.75922 | 0.55381 | 0.64604 | 2014 | 1.22136 | 0.47879 | 0.55357 |
2005 | 1.76697 | 0.65135 | 0.74974 | 2015 | 1.40545 | 0.50063 | 0.50261 |
2006 | 1.93700 | 0.57439 | 0.79286 | 2016 | 1.81346 | 0.53296 | 0.55885 |
2007 | 1.43559 | 0.78214 | 0.79907 | 2017 | 1.63453 | 0.56975 | 0.57954 |
2008 | 1.29608 | 0.68170 | 0.58509 | 2018 | 0.73236 | 0.49442 | 0.51711 |
2009 | 1.36844 | 0.74605 | 0.61164 | 2019 | 0.79601 | 0.59296 | 0.50427 |
Table 4 Matching coefficients of agricultural water-soil resources of Middle reaches of inland river basin in Hexi Corridor from 2000 to 2019 (Unit:104 m3 ·hm-2 )
年份 | 疏勒河 | 黑河 | 石羊河 | 年份 | 疏勒河 | 黑河 | 石羊河 |
---|---|---|---|---|---|---|---|
2000 | 2.23837 | 0.78676 | 0.59485 | 2010 | 1.81459 | 0.76615 | 0.65747 |
2001 | 1.61847 | 0.41249 | 0.58579 | 2011 | 1.41302 | 0.63465 | 0.60420 |
2002 | 2.25140 | 0.67357 | 0.58451 | 2012 | 1.36804 | 0.64520 | 0.70352 |
2003 | 1.81402 | 0.54865 | 0.96796 | 2013 | 1.52588 | 0.50361 | 0.39359 |
2004 | 1.75922 | 0.55381 | 0.64604 | 2014 | 1.22136 | 0.47879 | 0.55357 |
2005 | 1.76697 | 0.65135 | 0.74974 | 2015 | 1.40545 | 0.50063 | 0.50261 |
2006 | 1.93700 | 0.57439 | 0.79286 | 2016 | 1.81346 | 0.53296 | 0.55885 |
2007 | 1.43559 | 0.78214 | 0.79907 | 2017 | 1.63453 | 0.56975 | 0.57954 |
2008 | 1.29608 | 0.68170 | 0.58509 | 2018 | 0.73236 | 0.49442 | 0.51711 |
2009 | 1.36844 | 0.74605 | 0.61164 | 2019 | 0.79601 | 0.59296 | 0.50427 |
流域 | 市域 | 2000—2004年 | 2005—2009年 | 2010—2014年 | 2015—2019年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
耦合 协调度 | 耦合协调 类型 | 耦合 协调度 | 耦合协调 类型 | 耦合 协调度 | 耦合协调 类型 | 耦合 协调度 | 耦合协调 类型 | |||||
疏勒河 | 酒泉 | 0.39385 | 轻度失调 | 0.42999 | 濒临失调 | 0.48714 | 勉强协调 | 0.52198 | 基本协调 | |||
黑河 | 嘉峪关 | 0.42333 | 濒临失调 | 0.38954 | 轻度失调 | 0.42098 | 濒临失调 | 0.50040 | 基本协调 | |||
张掖 | 0.34628 | 轻度失调 | 0.41223 | 濒临失调 | 0.50403 | 基本协调 | 0.55105 | 初级协调 | ||||
石羊河 | 金昌 | 0.35416 | 轻度失调 | 0.41819 | 濒临失调 | 0.43264 | 濒临失调 | 0.50678 | 基本协调 | |||
武威 | 0.40193 | 濒临失调 | 0.41618 | 濒临失调 | 0.41359 | 濒临失调 | 0.51472 | 基本协调 |
Table 5 Coupling coordination types of water-soil resources in five cities of Hexi Corridor from 2000 to 2019
流域 | 市域 | 2000—2004年 | 2005—2009年 | 2010—2014年 | 2015—2019年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
耦合 协调度 | 耦合协调 类型 | 耦合 协调度 | 耦合协调 类型 | 耦合 协调度 | 耦合协调 类型 | 耦合 协调度 | 耦合协调 类型 | |||||
疏勒河 | 酒泉 | 0.39385 | 轻度失调 | 0.42999 | 濒临失调 | 0.48714 | 勉强协调 | 0.52198 | 基本协调 | |||
黑河 | 嘉峪关 | 0.42333 | 濒临失调 | 0.38954 | 轻度失调 | 0.42098 | 濒临失调 | 0.50040 | 基本协调 | |||
张掖 | 0.34628 | 轻度失调 | 0.41223 | 濒临失调 | 0.50403 | 基本协调 | 0.55105 | 初级协调 | ||||
石羊河 | 金昌 | 0.35416 | 轻度失调 | 0.41819 | 濒临失调 | 0.43264 | 濒临失调 | 0.50678 | 基本协调 | |||
武威 | 0.40193 | 濒临失调 | 0.41618 | 濒临失调 | 0.41359 | 濒临失调 | 0.51472 | 基本协调 |
1 | 姚华荣,吴绍洪,曹明明,等.区域水土资源的空间优化配置[J].资源科学,2004,26(1):99-106. |
2 | Luc C, Charles H, Edward R,et al.Effect of historical changes in land use and climate on the water budget of an urbanizing watershed[J].Water Resources Research,2006,42(3):W03426. |
3 | Cheng K, Fu Q, Chen X,et al.Adaptive allocation modeling for a complex system of regional water and land resources based on information entropy and its application[J].Water Resources Management,2015,29(14):4977-4993. |
4 | 刘彦随,甘红,张富刚.中国东北地区农业水土资源匹配格局[J].地理学报,2006,61(8):847-854. |
5 | 侯薇,刘小学,魏晓妹.陕西关中地区农业水土资源时空匹配格局研究[J].水土保持研究,2012,19(1):134-138. |
6 | 耿庆玲.西北旱区农业水土资源利用分区及其匹配特征研究[D].咸阳:中国科学院研究生院(教育部水土保持与生态环境研究中心),2014. |
7 | 张立杰,李健.西江流域环境资源公平性评价[J].中国沙漠,2018,38(3):673-680. |
8 | 李晓燕,郝晋珉,陈爱琪.山东省农业水土资源时空匹配格局及评价研究[J].中国农业大学学报,2020,25(11):1-11. |
9 | 李光勤,方徐兵.黄河流域绿色发展水平时空演变特征[J].中国沙漠,2021,41(4):129-139. |
10 | Lu W N, Liu W X, Hong M Y,et al.Spatial-temporal evolution characteristics and influencing factors of agricultural water use efficiency in northwest China:based on a super-DEA Model and a spatial panel econometric model[J].Water,2021,13(5):632-632. |
11 | Vitor J.Efficient water management:an analysis for the agricultural sector[J].Water Policy,2020,22(3):396-416. |
12 | 文倩,孟天醒,范慧平,等.河南省水土资源与经济发展耦合效应及其时空分异[J].水土保持研究,2017,24(3):234-240. |
13 | 璩路路,王永生,刘彦随,等.乡村振兴导向的水土资源承载力评价及其优化[J].自然资源学报,2021,36(2):300-314. |
14 | 徐娜.甘肃省内陆河流域农业水土资源匹配度及其优化调控[D].兰州:甘肃农业大学,2019. |
15 | 田青,李宗杰,宋玲玲,等.甘肃河西地区1986—2011年水土保持生态安全格局[J].中国沙漠,2014,34(6):1692-1698. |
16 | 朱陇强,王晓云,刘佳敏,等.甘肃河西地区历史遗址分布及其自然环境背景[J].中国沙漠,2021,41(4):121-128. |
17 | 李玲萍,卢泰山,刘明春,等.基于标准化流量指数(SDI)的石羊河流域水文干旱特征[J].中国沙漠,2020,40(4):24-33. |
18 | 张晓晓,张钰,徐浩杰,等.河西走廊三大内陆河流域出山径流变化特征及其影响因素分析[J].干旱区资源与环境,2014,28(4):66-72. |
19 | 吕杰.滇东南岩溶山区水土资源利用与生态环境耦合协调模拟研究[D].昆明:昆明理工大学,2014. |
20 | 姜秋香,周智美,王子龙,等.基于水土资源耦合的水资源短缺风险评价及优化[J].农业工程学报,2017,33(12):136-143. |
21 | 李慧,周维博,庄妍,等.延安市农业水土资源匹配及承载力[J].农业工程学报,2016,32(5):156-162. |
22 | 徐娜,张军,张仁陟.基于Malmquist DEA的甘肃内陆河流域农业水土资源利用效率及匹配特征研究[J].中国农业科技导报,2020,22(2):115-122. |
23 | 甘肃统计局.甘肃统计年鉴[Z].北京:中国统计出版社,2001-2020. |
24 | 甘肃省水利厅.甘肃水资源公报[R].北京:中国统计出版社,2000-2019. |
25 | 梁变变,石培基,王伟,等.甘肃省农业水土资源时空匹配格局[J].资源开发与市场,2016,32(12):1461-1465. |
26 | 徐娜,张军,张仁陟,等.基于DEA的农业水土资源匹配特征研究:以甘肃省5流域为例[J].中国农业资源与区划,2020,41(6):277-285. |
27 | 程清平,钟方雷,左小安,等.美丽中国与联合国可持续发展目标(SDGs)结合的黑河流域水资源承载力评价[J].中国沙漠,2020,40(1):204-214. |
28 | 许杰玉,蒋蕾,毛磊,等.典型西北干旱区水资源开发利用及保护对策研究:以武威市为例[J].水利发展研究,2016,16(5):34-37. |
[1] | Yanjun Guo, Linjuan Yang, Hong Chai, Yu Chen. Analysis of tourism competitiveness of five cities in Hexi Corridor based on factor analysis [J]. Journal of Desert Research, 2021, 41(5): 238-241. |
[2] | Jiliang Liu, Wenzhi Zhao, Fengrui Li, Yibin Ba. Community dynamics of ground arachnid arthropods in a gravel gobi desert of the middle of the Hexi Corridor, China [J]. Journal of Desert Research, 2021, 41(3): 155-164. |
[3] | Chuanhua Li, Huanhuan Yin, Tongbin Zhu, Min Zhou, Yutao Wang, Hao Sun, Hongjuan Cao, Haiyan Han. Impact of drought on net primary productivity of vegetation in arid and semi-arid areas: a case study of Hexi Corridor [J]. Journal of Desert Research, 2021, 41(1): 145-155. |
[4] | Zhou Lifeng, Yang Rong, Zhao Wenzhi. Temporal evolution of soil water repellency in stabilized sand dunes in artificial sand fixation vegetation area on fringe of a desert [J]. Journal of Desert Research, 2020, 40(3): 185-192. |
[5] | Li Yanying, Zhang Aiping, Li Hongying, Wang Fucun, Chen Ying, Zeng Ting. Relationship between Boundary Layer Height and Wind-sand Intensities over Hexi Corridor, China [J]. Journal of Desert Research, 2019, 39(5): 11-20. |
[6] | Wang Xinyuan, Liu Shizeng, Chen Xiangshun, Wang Xiaojun, Wang Bin, Wan Xiang. Dynamic Changes and Driving Factors of Oasis in Hexi Corridor [J]. Journal of Desert Research, 2019, 39(4): 212-219. |
[7] | Pan Kaijia, Zhang Zhengcai, Dong Zhibao, Zhang Caixia, Li Xingcai. Physicochemical Characteristics of Surface Sediments of Crescent-shaped Sand Dunes in the Hexi Corridor, Gansu, China [J]. Journal of Desert Research, 2019, 39(1): 44-51. |
[8] | Zhang Jian, Chen Jia, Huang Xin, Wang Ziqiao. Spatio-temporal Evolution of Urban Economic Vulnerability and Influence Factors in the Hexi Corridor Region: Restriction of Water Resources [J]. Journal of Desert Research, 2019, 39(1): 203-211. |
[9] | Li Danhua, Long Xiao, Wen Xiaopei, Jiang Yin, Meng Xiaowen. Influence of Underlying Surface on Dust Weatherin the Entrance of the Hexi Corridor [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(6): 1210-1218. |
[10] | Guan Mengluan, Zhang Zhengcai, Dong Zhibao. Wind-blown Sand Disaster Risk Assessment in the Hexi Corridor Based on RS and GIS [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(5): 830-835. |
[11] | Lang Lili, Wang Xunming, Zhu Bingqi, Wang Xiangdong, Hua Ting, Wang Guangtao, Li Hui, Zhang Caixia. Nebkha Formation and Variations in Sediment Availability and Wind-energy Regime of the Western Hexi Corridor over the Past Several Decades [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(4): 611-620. |
[12] | Yang Xiaoling, Ding Wenkui, Wang Heling, Zhang Aiping, Zhou Hua. Climatic Characteristics and Short-term Forecast of Sandstorm in East of Hexi Corridor [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(2): 449-457. |
[13] | Liu Honglan, Zhang Qiang, Zhang Junguo, Wang Haibo, Wen Xiaoyan. Application of the BP Neural Network Model in Summer Drought Prediction: a case in the Hexi Corridor [J]. JOURNAL OF DESERT RESEARCH, 2015, 35(2): 474-478. |
[14] | Li Zhuolun, Wang Naiang, Li Yu, Cheng Hongyi, Chen Qing. Precipitation Changes during the Early Holocene and Middle Holocene Implicated by Exogenetic Detrital Mineral Changes in Huahai Lake, Hexi Corridor of NW China [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(6): 1480-1485. |
[15] | Liu Honglan, Zhang Qiang, Wang Sheng, Guo Junqin, Yang Huan. Abnormal Spatial Distribution of Spring Precipitation and Its Decadal Variability in the Hexi Corridor in the Arid Area of Northwest China [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(5): 1386-1392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech