[1] |
Ma X F, Zhao C Y, Yan W,et al.Influences of 1.5 ℃ and 2.0 ℃ global warming scenarios on water use efficiency dynamics in the sandy areas of northern China[J].Science of The Total Environment,2019,664:161-174.
|
[2] |
Reynolds J F, Smith D M S, Lambin E F,et al.Global desertification:building a science for dryland development[J].Science,2007,316:847-851.
|
[3] |
张继义,赵哈林,张铜会,等.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J].植物生态学报,2004(1):86-92.
|
[4] |
赵学勇,安沙舟,曹广民,等.中国荒漠主要植物群落调查的意义、现状及方案[J].中国沙漠,2023,43(1):9-19.
|
[5] |
Wooding F.Plant cell anatomy[J].Nature,1969,222:1100.
|
[6] |
Sage R F, Way D A, Kubien D S.Rubisco,rubisco activase,and global climate change[J].Journal of Experimental Botany,2008,59(7):1581-1595.
|
[7] |
Keck R W, Boyer J S.Chloroplast response to low leaf water potentials:III.differing inhibition of electron transport and photophosphorylation[J].Plant Physiology,1974,53(3):474-479.
|
[8] |
Hatfield J L, Prueger J H.Temperature extremes:effect on plant growth and development[J].Weather and Climate Extremes,2015,10:4-10.
|
[9] |
郭蕊.科尔沁沙地典型林木蒸腾耗水与水文效应及生态防护功能研究[D].沈阳:沈阳农业大学,2022.
|
[10] |
Wahid A, Gelani S, Ashraf M,et al.Heat tolerance in plants:an overview[J].Environmental and Experimental Botany,2007,61(3):199-223.
|
[11] |
陈虎,管荣,刘长英,等.脱落酸信号调控植物干旱胁迫响应的研究进展[J].成都大学学报(自然科学版),2023,42(1):23-27.
|
[12] |
Shatskikh A S, Kotov A A, Adashev V E,et al.Functional significance of satellite DNAs:insights from Drosophila [J].Frontiers in Cell and Developmental Biology,2020,8:312.
|
[13] |
Cheng Z Y, Luan Y T, Meng J S,et al.WRKY transcription factor response to high-temperature stress[J].Plants,2021,10(10):2211.
|
[14] |
Guo M, Liu J H, Ma X,et al.The plant heat stress transcription factors (HSFs):structure,regulation,and function in response to abiotic stresses[J].Frontiers in Plant Science,2016,7:114.
|
[15] |
曲美慧,涂钢,冯喜媛.1961-2019年东北地区作物生长不同阶段极端干期时空分布特征分析[J].自然灾害学报,2022,31(2):242-251.
|
[16] |
Fan J Q, Xu Y, Ge H Y,et al.Vegetation growth variation in relation to topography in Horqin Sandy Land[J].Ecological Indicators,2020,113:106215.
|
[17] |
李思慧.1961-2018年科尔沁沙地气候变化特征[J].内蒙古气象,2019(5):8-10.
|
[18] |
Harris G R, Sexton D M H, Booth B B B,et al.Probabilistic projections of transient climate change[J].Climate Dynamics,2013,40(11):2937-2972.
|
[19] |
包天玲,刘继亮,苑峰,等.科尔沁沙质草地植物群落对增温的响应[J].中国沙漠,2024,44(1):151-160.
|
[20] |
Huang W D, He Y Z, Wang H H,et al.Leaf physiological responses of three psammophytes to combined effects of warming and precipitation reduction in Horqin Sandy Land,Northeast China[J].Frontiers in Plant Science,2022,12:785653.
|
[21] |
李红丽,董智,王林和,等.浑善达克沙地榆树根系分布特征及生物量研究[J].干旱区资源与环境,2002(4):99-105.
|
[22] |
Downton W J S, Berry J A, Seemann J R.Tolerance of photosynthesis to high temperature in desert plants 1[J].Plant Physiology,1984,74(4):786-790.
|
[23] |
Curtis E M, Knight C A, Petrou K,et al.A comparative analysis of photosynthetic recovery from thermal stress:a desert plant case study[J].Oecologia,2014,175(4):1051-1061.
|
[24] |
刘金环,曾德慧, Koo Lee Don.科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J].生态学杂志,2006(8):921-925.
|
[25] |
曹成有,寇振武,蒋德明,等.科尔沁沙地丘间地植被演变的研究[J].植物生态学报,2000(3):262-267.
|
[26] |
潘文杰.科尔沁沙地天然油松林与榆树疏林群落结构及多样性研究[D].呼和浩特:内蒙古农业大学,2011.
|
[27] |
Imadi S R, Kazi A G, Ahanger M A,et al.Plant transcriptomics and responses to environmental stress:an overview[J].Journal of Genetics,2015,94(3):525-537.
|
[28] |
Chen F Q, Ha X, Ma T,et al.Comparative analysis of the physiological and transcriptomic profiles reveals alfalfa drought resistance mechanisms[J].BMC Plant Biology,2024,24(1):954.
|
[29] |
刘新平,何玉惠,赵学勇,等.科尔沁沙地奈曼地区降水变化特征分析[J].水土保持研究,2011,18(2):155-158.
|
[30] |
孟庆兰,赵赫,高军凯,等.科尔沁地区年降水波动与空间分异特征[J].高原气象,2017,36(5):1234-1244.
|
[31] |
Zuo X A, Zhao X Y, Zhao H L,et al.Spatial heterogeneity of soil properties and vegetation-soil relationships following vegetation restoration of mobile dunes in Horqin Sandy Land,Northern China[J].Plant and Soil,2009,318(1):153-167.
|
[32] |
Marion G M, Henry G H R, Freckman D W,et al.Open-top designs for manipulating field temperature in high-latitude ecosystems[J].Global Change Biology,1997,3(S1):20-32.
|
[33] |
Chen C J, Wu Y, Li J W,et al.TBtools-II:A “one for all,all for one” bioinformatics platform for biological big-data mining[J].Molecular Plant,2023,16(11):1733-1742.
|
[34] |
Shinozaki K, Yamaguchi-Shinozaki K.Gene networks involved in drought stress response and tolerance[J].Journal of Experimental Botany,2006,58(2):221-227.
|
[35] |
Waseem M, Nkurikiyimfura O, Niyitanga S,et al.GRAS transcription factors emerging regulator in plants growth,development,and multiple stresses[J].Molecular Biology Reports,2022,49(10):9673-9685.
|
[36] |
Wang Z W, Wong D C J, Wang Y,et al.GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response[J].Plant Physiology,2021,186(3):1660-1678.
|
[37] |
Cheng M C, Liao P M, Kuo W W,et al.The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals[J].Plant Physiol,2013,162(3):1566-1582.
|
[38] |
周瑞莲,赵哈林,王海鸥.科尔沁沙地植被演替的抗逆性特征[J].中国沙漠,1999,19():2-7.
|
[39] |
Wen W W, Li K, Alseekh S,et al.Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population[J].The Plant Cell,2015,27(7):1839-1856.
|
[40] |
Nakabayashi R, Yonekura-Sakakibara K, Urano K,et al.Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J].The Plant Journal,2014,77(3):367-379.
|
[41] |
Allakhverdiev S I, Kreslavski V D, Klimov V V,et al.Heat stress:an overview of molecular responses in photosynthesis[J].Photosynthesis Research,2008,98(1):541-550.
|
[42] |
Martinazzo E G, Ramm A, Bacarin M A.The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica [J].Brazilian Journal of Plant Physiology,2012,24(4):237-246.
|
[43] |
Li H, Xu H L, Zhang P J,et al.High temperature effects on D1 protein turnover in three wheat varieties with different heat susceptibility[J].Plant Growth Regulation,2017,81(1):1-9.
|
[44] |
Yang X X, Che Y F, García V J,et al.Cyclophilin 37 maintains electron transport via the cytochrome b6/f complex under high light in Arabidopsis[J].Plant Physiology,2023,192(4):2803-2821.
|
[45] |
黄刚,赵学勇,崔建垣,等.水分胁迫对2种科尔沁沙地植物光合和水分利用特性的影响[J].西北植物学报,2008(11):2306-2313.
|
[46] |
Ghorbel M, Brini F, Sharma A,et al.Role of jasmonic acid in plants:the molecular point of view[J].Plant Cell Reports,2021,40(8):1471-1494.
|
[47] |
Sheard L B, Tan X, Mao H,et al.Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J].Nature,2010,468(7322):400-405.
|
[48] |
Ruan J, Zhou Y, Zhou M,et al.Jasmonic ccid signaling pathway in plants[J].International Journal of Molecular Sciences,2019,20(10):2479.
|