Journal of Desert Research ›› 2023, Vol. 43 ›› Issue (4): 274-287.DOI: 10.7522/j.issn.1000-694X.2022.00137
Qi You1(), Baorong Xu1(
), Songbing Zou1, Yihao Qin1, Duo Wang2, Dong Yu3
Received:
2022-07-23
Revised:
2022-11-23
Online:
2023-07-20
Published:
2023-08-14
Contact:
Baorong Xu
CLC Number:
Qi You, Baorong Xu, Songbing Zou, Yihao Qin, Duo Wang, Dong Yu. The vegetation-climate quantitative relationship and characteristics in arid and semi-arid region of northern China[J]. Journal of Desert Research, 2023, 43(4): 274-287.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00137
编码 | 合并后潜在植被类型 | 1:100万中国植被图植被型 |
---|---|---|
1 | 高山冻原与稀疏植被 | 高山苔原,高山稀疏植被,高山垫状植被,垫状矮半灌木高寒荒漠 |
2 | 高山草本植被 | 禾草、薹草高寒草原,嵩草、杂类草高寒草甸,亚高山落叶阔叶灌丛,亚高山革质常绿阔叶灌丛 |
3 | 山地森林植被 | 寒温带和温带山地针叶林,亚热带山地针叶、常绿阔叶、落叶阔叶混交林,亚热带和热带山地针叶林 |
4 | 温带荒漠植被 | 矮半乔木荒漠,半灌木、矮半灌木荒漠,草原化灌木荒漠,多汁盐生矮半灌木荒漠,灌木荒漠,一年生草本荒漠,温带丛生矮禾草、矮半灌木荒漠草原 |
5 | 温带草本植被 | 禾草、杂类草草甸,温带禾草、杂类草草甸草原,温带丛生禾草草原 |
6 | 温带森林植被 | 亚热带常绿、落叶阔叶混交林,亚热带常绿阔叶林,亚热带和热带竹林及竹丛,亚热带针叶林,温带落叶阔叶林,温带针叶林,温带针叶、落叶阔叶混交林,温带落叶灌丛 |
Table 1 Potential vegetation classification of arid and semi-arid region of northern China
编码 | 合并后潜在植被类型 | 1:100万中国植被图植被型 |
---|---|---|
1 | 高山冻原与稀疏植被 | 高山苔原,高山稀疏植被,高山垫状植被,垫状矮半灌木高寒荒漠 |
2 | 高山草本植被 | 禾草、薹草高寒草原,嵩草、杂类草高寒草甸,亚高山落叶阔叶灌丛,亚高山革质常绿阔叶灌丛 |
3 | 山地森林植被 | 寒温带和温带山地针叶林,亚热带山地针叶、常绿阔叶、落叶阔叶混交林,亚热带和热带山地针叶林 |
4 | 温带荒漠植被 | 矮半乔木荒漠,半灌木、矮半灌木荒漠,草原化灌木荒漠,多汁盐生矮半灌木荒漠,灌木荒漠,一年生草本荒漠,温带丛生矮禾草、矮半灌木荒漠草原 |
5 | 温带草本植被 | 禾草、杂类草草甸,温带禾草、杂类草草甸草原,温带丛生禾草草原 |
6 | 温带森林植被 | 亚热带常绿、落叶阔叶混交林,亚热带常绿阔叶林,亚热带和热带竹林及竹丛,亚热带针叶林,温带落叶阔叶林,温带针叶林,温带针叶、落叶阔叶混交林,温带落叶灌丛 |
潜在植被类型 | 年降水量(P)/mm | 年平均生物温度(ABT)/°C | 可能蒸散率(PER) | |||
---|---|---|---|---|---|---|
高山冻原与稀疏植被 | 13.0 | 338.5 | 0.2 | 2.3 | -3.9 | 8.2 |
高山草本植被 | 201.5 | 563.3 | 0.9 | 3.3 | -2.8 | 4.7 |
山地森林植被 | 355.0 | 584.8 | 3.8 | 6.0 | 0.1 | 1.3 |
温带荒漠植被 | 42.6 | 193.7 | 7.2 | 12.2 | 0.3 | 17.8 |
温带草本植被 | 236.5 | 433.0 | 5.5 | 9.6 | -0.4 | 3.5 |
温带森林植被 | 349.9 | 709.5 | 6.9 | 11.6 | -1.3 | 4.4 |
Table 2 Reference value of climate indicators relevant to different types of potential vegetation
潜在植被类型 | 年降水量(P)/mm | 年平均生物温度(ABT)/°C | 可能蒸散率(PER) | |||
---|---|---|---|---|---|---|
高山冻原与稀疏植被 | 13.0 | 338.5 | 0.2 | 2.3 | -3.9 | 8.2 |
高山草本植被 | 201.5 | 563.3 | 0.9 | 3.3 | -2.8 | 4.7 |
山地森林植被 | 355.0 | 584.8 | 3.8 | 6.0 | 0.1 | 1.3 |
温带荒漠植被 | 42.6 | 193.7 | 7.2 | 12.2 | 0.3 | 17.8 |
温带草本植被 | 236.5 | 433.0 | 5.5 | 9.6 | -0.4 | 3.5 |
温带森林植被 | 349.9 | 709.5 | 6.9 | 11.6 | -1.3 | 4.4 |
潜在植被类型 | 年降水量(P)模拟值/mm | 年平均生物温度(ABT)模拟值/°C | 可能蒸散率(PER)模拟值 | |||
---|---|---|---|---|---|---|
最小值 | 最大值 | 最小值 | 最大值 | 最小值 | 最大值 | |
高山冻原与稀疏植被 | 20 | 320 | 0 | 3 | 0 | 8 |
高山草本植被 | 160 | 640 | 0.75 | 3 | 0 | 4 |
山地森林植被 | 320 | 640 | 3 | 6 | 0 | 1 |
温带荒漠植被 | 40 | 160 | 6 | 12 | 0.5 | 16 |
温带草本植被 | 160 | 320 | 6 | 12 | 0 | 4 |
温带森林植被 | 320 | 640 | 6 | 12 | 0 | 4 |
Table 3 Analog value of climate indicators relevant to different types of potential vegetation
潜在植被类型 | 年降水量(P)模拟值/mm | 年平均生物温度(ABT)模拟值/°C | 可能蒸散率(PER)模拟值 | |||
---|---|---|---|---|---|---|
最小值 | 最大值 | 最小值 | 最大值 | 最小值 | 最大值 | |
高山冻原与稀疏植被 | 20 | 320 | 0 | 3 | 0 | 8 |
高山草本植被 | 160 | 640 | 0.75 | 3 | 0 | 4 |
山地森林植被 | 320 | 640 | 3 | 6 | 0 | 1 |
温带荒漠植被 | 40 | 160 | 6 | 12 | 0.5 | 16 |
温带草本植被 | 160 | 320 | 6 | 12 | 0 | 4 |
温带森林植被 | 320 | 640 | 6 | 12 | 0 | 4 |
潜在植被类型 | 年降水量(P)模拟值/mm | 年平均生物温度(ABT)模拟值/℃ | 可能蒸散率(PER)模拟值 | |||
---|---|---|---|---|---|---|
最小值 | 最大值 | 最小值 | 最大值 | 最小值 | 最大值 | |
高山冻原与稀疏植被 | 20 | 240 | 0 | 3 | 0 | 8 |
高山草本植被 | 240 | 640 | 0.75 | 3 | 0 | 4 |
山地森林植被 | 320 | 640 | 3 | 6 | 0 | 1.5 |
温带荒漠植被 | 40 | 160 | 3 | 12 | 0.5 | 16 |
温带草本植被 | 160 | 320 | 3 | 12 | 0 | 6 |
温带森林植被 | 320 | 640 | 6 | 12 | 0 | 4 |
Table 4 Parameters of life zones of arid and semi-arid region of northern China
潜在植被类型 | 年降水量(P)模拟值/mm | 年平均生物温度(ABT)模拟值/℃ | 可能蒸散率(PER)模拟值 | |||
---|---|---|---|---|---|---|
最小值 | 最大值 | 最小值 | 最大值 | 最小值 | 最大值 | |
高山冻原与稀疏植被 | 20 | 240 | 0 | 3 | 0 | 8 |
高山草本植被 | 240 | 640 | 0.75 | 3 | 0 | 4 |
山地森林植被 | 320 | 640 | 3 | 6 | 0 | 1.5 |
温带荒漠植被 | 40 | 160 | 3 | 12 | 0.5 | 16 |
温带草本植被 | 160 | 320 | 3 | 12 | 0 | 6 |
温带森林植被 | 320 | 640 | 6 | 12 | 0 | 4 |
Fig.4 Trends of mean annual precipitation, mean annual bio-temperature and potential evapotranspiration rate in arid and semi-arid region of northern China from 1981 to 2010
现状植被 编码 | 潜在植被编码 | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 总面积 | |
1 | 108 585 | 34 599 | 165 | 6 733 | 1 118 | 0 | 151 200 |
2 | 66 914 | 245 353 | 32 589 | 9 506 | 19 922 | 1 667 | 375 951 |
3 | 659 | 4 120 | 55 867 | 316 | 7 375 | 6 868 | 75 205 |
4 | 13 583 | 2 252 | 3 210 | 399 314 | 221 649 | 9 323 | 649 331 |
5 | 8 035 | 7 376 | 43 432 | 6 407 | 171 750 | 187 604 | 424 604 |
6 | 224 | 316 | 13 456 | 1 947 | 11 547 | 117 581 | 145 071 |
总面积 | 198 000 | 294 016 | 148 719 | 424 223 | 433 361 | 323 043 | 1 821 362 |
Table 5 Area transition matrix between real vegetation and potential vegetation
现状植被 编码 | 潜在植被编码 | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 总面积 | |
1 | 108 585 | 34 599 | 165 | 6 733 | 1 118 | 0 | 151 200 |
2 | 66 914 | 245 353 | 32 589 | 9 506 | 19 922 | 1 667 | 375 951 |
3 | 659 | 4 120 | 55 867 | 316 | 7 375 | 6 868 | 75 205 |
4 | 13 583 | 2 252 | 3 210 | 399 314 | 221 649 | 9 323 | 649 331 |
5 | 8 035 | 7 376 | 43 432 | 6 407 | 171 750 | 187 604 | 424 604 |
6 | 224 | 316 | 13 456 | 1 947 | 11 547 | 117 581 | 145 071 |
总面积 | 198 000 | 294 016 | 148 719 | 424 223 | 433 361 | 323 043 | 1 821 362 |
编码 | 1980s | 1990s | 2000s | 2010s | ||||
---|---|---|---|---|---|---|---|---|
面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | |
1 | 306 418 | 9.6 | 306 982 | 9.5 | 245 855 | 7.8 | 256 271 | 8.5 |
2 | 385 305 | 12.1 | 384 409 | 11.8 | 427 788 | 13.6 | 398 840 | 13.3 |
3 | 262 931 | 8.2 | 247 997 | 7.6 | 227 995 | 7.3 | 210 144 | 7.0 |
4 | 741 024 | 23.2 | 717 130 | 22.1 | 665 232 | 21.2 | 584 254 | 19.4 |
5 | 696 307 | 21.8 | 736 866 | 22.7 | 800 784 | 25.5 | 699 750 | 23.3 |
6 | 801 769 | 25.1 | 853 222 | 26.3 | 776 848 | 24.7 | 858 314 | 28.5 |
Table 6 Interdecadal area and proportion of potential vegetation
编码 | 1980s | 1990s | 2000s | 2010s | ||||
---|---|---|---|---|---|---|---|---|
面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | |
1 | 306 418 | 9.6 | 306 982 | 9.5 | 245 855 | 7.8 | 256 271 | 8.5 |
2 | 385 305 | 12.1 | 384 409 | 11.8 | 427 788 | 13.6 | 398 840 | 13.3 |
3 | 262 931 | 8.2 | 247 997 | 7.6 | 227 995 | 7.3 | 210 144 | 7.0 |
4 | 741 024 | 23.2 | 717 130 | 22.1 | 665 232 | 21.2 | 584 254 | 19.4 |
5 | 696 307 | 21.8 | 736 866 | 22.7 | 800 784 | 25.5 | 699 750 | 23.3 |
6 | 801 769 | 25.1 | 853 222 | 26.3 | 776 848 | 24.7 | 858 314 | 28.5 |
1980s | 1990s | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 总面积 | |
1 | 289 155 | 1 681 | 0 | 8 764 | 1 799 | 0 | 301 399 |
2 | 10 629 | 365 229 | 3 346 | 0 | 3 319 | 0 | 382 523 |
3 | 0 | 1 086 | 232 957 | 0 | 3 068 | 25 820 | 262 931 |
4 | 56 | 0 | 0 | 659 494 | 43 713 | 0 | 703 263 |
5 | 3 | 0 | 1 943 | 12 903 | 660 260 | 17 274 | 692 383 |
6 | 0 | 0 | 46 | 0 | 24 707 | 768 207 | 792 960 |
总面积 | 299 843 | 367 996 | 238 292 | 681 161 | 736 866 | 811 301 | 3 135 459 |
Table 7 Area transition matrix of potential vegetation between 1980s and 1990s
1980s | 1990s | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 总面积 | |
1 | 289 155 | 1 681 | 0 | 8 764 | 1 799 | 0 | 301 399 |
2 | 10 629 | 365 229 | 3 346 | 0 | 3 319 | 0 | 382 523 |
3 | 0 | 1 086 | 232 957 | 0 | 3 068 | 25 820 | 262 931 |
4 | 56 | 0 | 0 | 659 494 | 43 713 | 0 | 703 263 |
5 | 3 | 0 | 1 943 | 12 903 | 660 260 | 17 274 | 692 383 |
6 | 0 | 0 | 46 | 0 | 24 707 | 768 207 | 792 960 |
总面积 | 299 843 | 367 996 | 238 292 | 681 161 | 736 866 | 811 301 | 3 135 459 |
1990s | 2000s | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 总面积 | |
1 | 240 585 | 42 013 | 0 | 8 708 | 3 812 | 0 | 295 118 |
2 | 1 887 | 365 218 | 7 857 | 0 | 3 013 | 0 | 377 975 |
3 | 0 | 0 | 213 883 | 0 | 1 916 | 28 425 | 244 224 |
4 | 0 | 0 | 0 | 612 152 | 30 525 | 0 | 642 677 |
5 | 0 | 0 | 6 247 | 27 608 | 662 706 | 28 317 | 724 878 |
6 | 0 | 0 | 0 | 0 | 98 812 | 720 098 | 818 910 |
总面积 | 242 472 | 407 231 | 227 987 | 648 468 | 800 784 | 776 840 | 3 103 782 |
Table 8 Area transition matrix of potential vegetation between 1990s and 2000s
1990s | 2000s | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 总面积 | |
1 | 240 585 | 42 013 | 0 | 8 708 | 3 812 | 0 | 295 118 |
2 | 1 887 | 365 218 | 7 857 | 0 | 3 013 | 0 | 377 975 |
3 | 0 | 0 | 213 883 | 0 | 1 916 | 28 425 | 244 224 |
4 | 0 | 0 | 0 | 612 152 | 30 525 | 0 | 642 677 |
5 | 0 | 0 | 6 247 | 27 608 | 662 706 | 28 317 | 724 878 |
6 | 0 | 0 | 0 | 0 | 98 812 | 720 098 | 818 910 |
总面积 | 242 472 | 407 231 | 227 987 | 648 468 | 800 784 | 776 840 | 3 103 782 |
2000s | 2010s | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 总面积 | |
1 | 234 418 | 2 562 | 0 | 1 927 | 1 834 | 0 | 240 741 |
2 | 9 689 | 380 644 | 7 294 | 0 | 2 169 | 0 | 399 796 |
3 | 0 | 2 304 | 193 999 | 0 | 99 | 10 313 | 206 715 |
4 | 4 594 | 0 | 0 | 568 692 | 67 480 | 0 | 640 766 |
5 | 1 025 | 1 331 | 6 990 | 1 973 | 627 768 | 151 047 | 790 134 |
6 | 0 | 0 | 1 772 | 0 | 316 | 696 617 | 698 705 |
总面积 | 249 726 | 386 841 | 210 055 | 572 592 | 699 666 | 857 977 | 2 976 857 |
Table 9 Area transition matrix of potential vegetation between 2000s and 2010s
2000s | 2010s | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 总面积 | |
1 | 234 418 | 2 562 | 0 | 1 927 | 1 834 | 0 | 240 741 |
2 | 9 689 | 380 644 | 7 294 | 0 | 2 169 | 0 | 399 796 |
3 | 0 | 2 304 | 193 999 | 0 | 99 | 10 313 | 206 715 |
4 | 4 594 | 0 | 0 | 568 692 | 67 480 | 0 | 640 766 |
5 | 1 025 | 1 331 | 6 990 | 1 973 | 627 768 | 151 047 | 790 134 |
6 | 0 | 0 | 1 772 | 0 | 316 | 696 617 | 698 705 |
总面积 | 249 726 | 386 841 | 210 055 | 572 592 | 699 666 | 857 977 | 2 976 857 |
编码 | 1980s―1990s | 1990s―2000s | 2000s―2010s | |||
---|---|---|---|---|---|---|
偏移距离/km | 偏移方向 | 偏移距离/km | 偏移方向 | 偏移距离/km | 偏移方向 | |
1 | 36.0 | 东 | 97.0 | 西 | 34.2 | 东南 |
2 | 12.0 | 东南 | 19.4 | 西南 | 26.8 | 西北 |
3 | 110.8 | 西南 | 119.4 | 西南 | 46.6 | 西南 |
4 | 56.0 | 东南 | 29.6 | 东南 | 87.5 | 西北 |
5 | 35.1 | 西 | 147.7 | 东 | 144.9 | 西 |
6 | 12.4 | 西南 | 64.0 | 西 | 100.2 | 东北 |
Table 10 Adjacent interdecadal shift trends of potential vegetation's mean center
编码 | 1980s―1990s | 1990s―2000s | 2000s―2010s | |||
---|---|---|---|---|---|---|
偏移距离/km | 偏移方向 | 偏移距离/km | 偏移方向 | 偏移距离/km | 偏移方向 | |
1 | 36.0 | 东 | 97.0 | 西 | 34.2 | 东南 |
2 | 12.0 | 东南 | 19.4 | 西南 | 26.8 | 西北 |
3 | 110.8 | 西南 | 119.4 | 西南 | 46.6 | 西南 |
4 | 56.0 | 东南 | 29.6 | 东南 | 87.5 | 西北 |
5 | 35.1 | 西 | 147.7 | 东 | 144.9 | 西 |
6 | 12.4 | 西南 | 64.0 | 西 | 100.2 | 东北 |
1 | 魏一鸣,袁潇晨,吴刚,等.气候变化风险评估研究现状与热点:基于Web of Science的文献计量分析[J].中国科学基金,2014,28(5):347-356. |
2 | IPCC.Climate Change 2021:The Physical Science Basis.Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R].Cambridge,UK:Cambridge University Press,2021. |
3 | IPCC.Climate Change 2022:Impacts, Adaptation, and Vulnerability.Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R].Cambridge, UK: Cambridge University Press,2022. |
4 | 倪健.植被-气候分类指标及其应用[J].生态学杂志,1998(5):34-45. |
5 | 陈亚宁.干旱区科学概论[M].北京:科学出版社,2021. |
6 | 陈亚宁,李玉朋,李稚,等.全球气候变化对干旱区影响分析[J].地球科学进展,2022(2):111-119. |
7 | 李飞,赵军,赵传燕,等.中国北方干旱半干旱区潜在植被演替[J].生态学报,2011,31(3):689-697. |
8 | 陈曦,胡汝骥,姜逢清,等.中国干旱区自然地理[M].北京:科学出版社,2015. |
9 | 杨思遥,孟丹,李小娟,等.华北地区2001-2014年植被变化对SPEI气象干旱指数多尺度的响应[J].生态学报,2018,38(3):1028-1039. |
10 | 安洁,付博,李玮,等.东亚地区典型极端气候指标未来预估及高温下人口暴露度研究[J].北京大学学报(自然科学版),2020,56(5):884-892. |
11 | 杨舒畅,杨恒山.1982-2013年内蒙古地区干旱变化及植被响应[J].自然灾害学报,2019,28(1):175-183. |
12 | 韩兰英,张强,马鹏里,等.气候变暖背景下黄河流域干旱灾害风险空间特征[J].中国沙漠,2021,41(4):225-234. |
13 | 张华,徐存刚,王浩.2001-2018年西北地区植被变化对气象干旱的响应[J].地理科学,2020,40(6):1029-1038. |
14 | 刘华民,吴绍洪,郑度,等.潜在自然植被研究与展望[J].地理科学进展,2004(1):62-70. |
15 | 赵传燕,冯兆东,南忠仁,等.黄土高原祖厉河流域潜在植被分布模拟研究[J].地理学报,2007,62(1):52-61. |
16 | 张新时.中国植被及其地理格局中华人民共和国植被图集(1∶100万)说明书(上卷)[M].北京:地质出版社,2007. |
17 | Tüxen R.Die heutige potentielle natürliche vegetation als gegenstand der vegetationskartierung: mit 10 Tabellen[J]. Berichte zur deutschen Landeskunde,1956,13. |
18 | Holdridge L R.Determination of world plant formations from simple climatic data[J].Science,1947,105(2727):367. |
19 | Fan Z, Fan B.Shifts of the mean centers of potential vegetation ecosystems under future climate change in Eurasia[J].Forests,2019,10(10):873. |
20 | Zou S B, Cheng G D, Xiao H L,et al.Holocene natural rhythms of vegetation and present potential ecology in the Western Chinese Loess Plateau[J].Quaternary International,2009,194:55-67. |
21 | 范泽孟.中国生态过渡带分布的空间识别及情景模拟[J].地理学报,2021,76(3):626-644. |
22 | 范泽孟,范斌,岳天祥.欧亚大陆植被生态系统潜在分布情景及其对气候变化的响应[J].中国科学:地球科学,2019,49(11):1817-1830. |
23 | Fan Z, Bai X.Scenarios of potential vegetation distribution in the different gradient zones of Qinghai-Tibet Plateau under future climate change[J].Science of The Total Environment,2021,796(2):148918. |
24 | Bourque P A.Ecological life zones of Saint Lucia.[J].Global Ecology & Biogeography,2001,10(5):549-566. |
25 | 程姗岭,于海鹏,任钰,等.中国干旱半干旱区气候异常影响机理研究进展[J].中国沙漠,2023,43(3):21-35. |
26 | 尹云鹤,马丹阳,邓浩宇,等.中国北方干湿过渡区生态系统生产力的气候变化风险评估[J].地理学报,2021,76(7):1605-1617. |
27 | 侯学煜.中国的植被[M].北京:人民教育出版社,1960. |
28 | 张新时.研究全球变化的植被-气候分类系统[J].第四纪研究,1993(2):157-169. |
29 | MacMahon J A, Wieboldt T F.Applying biogeographic principles to resource management: a case study evaluating holdridge's life zone model[J].Great Basin Naturalist Memoirs,1978(2):245-257. |
30 | 郭柯,方精云,王国宏,等.中国植被分类系统修订方案[J].植物生态学报,2020,44(2):111-127. |
31 | 高萌.基于Holdridge生命地带模型的我国南北过渡带潜在植被分布模拟[D].兰州:兰州大学,2019. |
32 | 李玉,牛路,赵泉华.抚顺矿区1989-2019年土地利用/覆盖变化分析[J].测绘科学,2021,46(8):96-104. |
33 | 郝君明.中国Holdridge生命地带与潜在植被空间格局研究[D].兰州:西北师范大学,2009. |
34 | 修丽娜.基于CSCS模型的中国潜在自然植被时空分布特征研究[D].兰州:兰州大学,2014. |
35 | 车彦军,赵军,张明军,等.不同气候变化情景下2070-2099年中国潜在植被及其敏感性[J].生态学报,2016,36(10):2885-2895. |
36 | 杜怀玉,赵军,师银芳,等.气候变化下中国潜在植被演替及其敏感性[J].生态学杂志,2018,37(5):1459-1466. |
[1] | Jianbing Lu, Ke Ju, Weibin Liao. Variation in NDVI and its response to climate change and human activities in Gansu Province during 2000-2020 [J]. Journal of Desert Research, 2023, 43(4): 118-127. |
[2] | Yongzhong Feng, Zhenliang Yin, Lingge Wang, Long Mao, Xiaoyi Qiu, Zhuolin Tao, Cuixia Wu. The impacts of climate change and land use change on terrestrial ecosystem carbon storage of Gansu province from 1980 to 2020 [J]. Journal of Desert Research, 2023, 43(4): 168-179. |
[3] | Pengfei Liang, Huijuan Xin, Zongxing Li, Fusen Nan, Biao Tang, Wenbao Zhang. Study on the attribution of runoff variation in the Danghe River based on the Budyko hypothesis [J]. Journal of Desert Research, 2023, 43(3): 210-219. |
[4] | Ran Duan, Zongjie Li, Yu Wang, Xiaoying Liu, Juan Gui, Pengfei Liang, Yuchen Li, Jian Xue, Mengqing Liu, Bin Xu. Characteristics of runoff change in the Shiyang River Basin [J]. Journal of Desert Research, 2023, 43(3): 57-68. |
[5] | Ziyan Han, Jijun Meng, Yi Zou, Likai Zhu. Vegetation dynamics and their response to climate change and ecological protection projects in the Heihe River Basin from 1982 to 2017 [J]. Journal of Desert Research, 2023, 43(3): 96-106. |
[6] | Chunming Xin, Mingzhu He, Chengyi Li, Libin Zhang, Xinrong Li. A review of research progress on nitrous oxide emissions from desert soil and its driving factors [J]. Journal of Desert Research, 2023, 43(2): 184-194. |
[7] | Hong Sun, Jiyun Duan, Yujie Liu, Ruilan Ran, Xiaofeng Li, Pengshan Zhao. Potential distribution of the genus Agriophyllum under climate change [J]. Journal of Desert Research, 2023, 43(2): 255-263. |
[8] | Haixiu He, Aihong Fu, Chuan Wang. Negetation index change and its driving forces of low mountain meadow vegetation in the northwest of Tacheng Region, Xinjiang, China [J]. Journal of Desert Research, 2023, 43(1): 187-196. |
[9] | Haojun Qin, Xiaojun Yang, Li Ma, Yicheng Wang, Zhao Fu, Junxia Zhang, Zhengqi Lu. Characteristics and causes of regional sandstorms in Northwest of China from 2000 to 2020 [J]. Journal of Desert Research, 2022, 42(6): 53-64. |
[10] | Xinying Liu, Ming Jin, Fan Yang, Yapeng Ma, Hui Liu, Xiaoyun Sun, Dunsheng Xia. A preliminary study of environmental changes since middle Holocene and its impacts on the evolution of civilization in the eastern Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(5): 92-100. |
[11] | Shihua Zhu, Xia Fang, Xin Hang, Xiaoping Xie, Liangxiao Sun, Liangzhong Cao. Normalized difference vegetation index ( NDVI ) dynamics of grassland in Central Asia and its response to climate change and human activities [J]. Journal of Desert Research, 2022, 42(4): 229-241. |
[12] | Xueping Chen, Xueyong Zhao, Ruixiong Wang, Zhiying Ning, Jiannan Lu, Siteng Zhao. Research advances on the impact of climate change and LUCC for water resources in the northern agro-pastoral zone in China [J]. Journal of Desert Research, 2022, 42(3): 170-177. |
[13] | Yulai Gong, Shaoxiu Ma, Weiqi Liu. A comparative study of machine learning and statistical models in climate downscaling in the Shiyang River Basin [J]. Journal of Desert Research, 2022, 42(1): 196-210. |
[14] | Benli Liu, Wanyue Peng, Shulin Liu, Ting Yang. Estimation on the dust lift amount and source contribution of the heavy dust weather in mid-March 2021 over Central East Asia [J]. Journal of Desert Research, 2022, 42(1): 79-86. |
[15] | Yanhui Lei, Guodong Ding, Zimeng Li, Wenfeng Chi, Guanglei Gao, Yuanyuan Zhao. Land use/cover change and its ecosystem service value response in the Beijing-Tianjin sandstorm source control project area [J]. Journal of Desert Research, 2021, 41(6): 29-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech