Journal of Desert Research ›› 2023, Vol. 43 ›› Issue (2): 255-263.DOI: 10.7522/j.issn.1000-694X.2022.00141
Hong Sun1,2(), Jiyun Duan1,3, Yujie Liu1,2, Ruilan Ran1,2, Xiaofeng Li1,2, Pengshan Zhao1(
)
Received:
2022-07-28
Revised:
2022-12-12
Online:
2023-03-20
Published:
2023-04-12
Contact:
Pengshan Zhao
CLC Number:
Hong Sun, Jiyun Duan, Yujie Liu, Ruilan Ran, Xiaofeng Li, Pengshan Zhao. Potential distribution of the genus Agriophyllum under climate change[J]. Journal of Desert Research, 2023, 43(2): 255-263.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00141
简称 | 环境变量 | 贡献率/% | 置换重要值/% |
---|---|---|---|
bio2 | 昼夜温差月均值 | 28.2 | 2.5 |
bio1 | 年平均气温 | 23.1 | 42.1 |
bio3 | 等温差 | 14.8 | 25.6 |
bio8 | 最湿季平均气温 | 14.0 | 2.3 |
bio15 | 降水量变异系数 | 8.2 | 2.6 |
bio17 | 最干季降水量 | 6.0 | 15.7 |
bio12 | 年降水量 | 4.6 | 6.1 |
bio18 | 最暖季降水量 | 0.8 | 3.1 |
bio19 | 最冷季降水量 | 0.3 | 0.1 |
Table 1 The contribution rate and permutation importance of dominant environmental factors
简称 | 环境变量 | 贡献率/% | 置换重要值/% |
---|---|---|---|
bio2 | 昼夜温差月均值 | 28.2 | 2.5 |
bio1 | 年平均气温 | 23.1 | 42.1 |
bio3 | 等温差 | 14.8 | 25.6 |
bio8 | 最湿季平均气温 | 14.0 | 2.3 |
bio15 | 降水量变异系数 | 8.2 | 2.6 |
bio17 | 最干季降水量 | 6.0 | 15.7 |
bio12 | 年降水量 | 4.6 | 6.1 |
bio18 | 最暖季降水量 | 0.8 | 3.1 |
bio19 | 最冷季降水量 | 0.3 | 0.1 |
时期 | 当前 | 2050s | 2070s | ||||
---|---|---|---|---|---|---|---|
SSP126 | SSP245 | SSP585 | SSP126 | SSP245 | SSP585 | ||
合计 | 1 731.50 | 1 841.54 | 1 978.15 | 2 084.15 | 1 870.44 | 2 014.14 | 2 315.75 |
低适生区 | 696.18 | 657.79 | 703.10 | 720.03 | 628.21 | 678.13 | 743.65 |
中适生区 | 572.98 | 562.78 | 617.37 | 612.41 | 600.24 | 614.61 | 605.99 |
高适生区 | 462.35 | 620.97 | 657.69 | 751.72 | 641.98 | 721.40 | 966.10 |
Table 2 Changes in the suitable areas of Agriophyllum under different periods (万km2 )
时期 | 当前 | 2050s | 2070s | ||||
---|---|---|---|---|---|---|---|
SSP126 | SSP245 | SSP585 | SSP126 | SSP245 | SSP585 | ||
合计 | 1 731.50 | 1 841.54 | 1 978.15 | 2 084.15 | 1 870.44 | 2 014.14 | 2 315.75 |
低适生区 | 696.18 | 657.79 | 703.10 | 720.03 | 628.21 | 678.13 | 743.65 |
中适生区 | 572.98 | 562.78 | 617.37 | 612.41 | 600.24 | 614.61 | 605.99 |
高适生区 | 462.35 | 620.97 | 657.69 | 751.72 | 641.98 | 721.40 | 966.10 |
时期 | 面积/万km2 | 变化/% | |||||
---|---|---|---|---|---|---|---|
扩张 | 保留 | 收缩 | 扩张率 | 保留率 | 收缩率 | ||
2050s-SSP126 | 118.85 | 1 549.41 | 35.22 | 3.31 | 43.14 | 0.98 | |
2050s-SSP245 | 214.17 | 1 568.29 | 16.33 | 5.96 | 43.66 | 0.45 | |
2050s-SSP585 | 297.25 | 1 562.42 | 22.20 | 8.28 | 43.50 | 0.62 | |
2070s-SSP126 | 135.49 | 1 566.31 | 18.32 | 3.77 | 43.61 | 0.51 | |
2070s-SSP245 | 251.97 | 1 548.85 | 35.78 | 7.01 | 43.12 | 1.00 | |
2070s-SSP585 | 462.06 | 1 564.81 | 19.82 | 12.86 | 43.56 | 0.55 |
Table 3 Spatial changes in the suitable areas of Agriophyllum under future climate scenarios
时期 | 面积/万km2 | 变化/% | |||||
---|---|---|---|---|---|---|---|
扩张 | 保留 | 收缩 | 扩张率 | 保留率 | 收缩率 | ||
2050s-SSP126 | 118.85 | 1 549.41 | 35.22 | 3.31 | 43.14 | 0.98 | |
2050s-SSP245 | 214.17 | 1 568.29 | 16.33 | 5.96 | 43.66 | 0.45 | |
2050s-SSP585 | 297.25 | 1 562.42 | 22.20 | 8.28 | 43.50 | 0.62 | |
2070s-SSP126 | 135.49 | 1 566.31 | 18.32 | 3.77 | 43.61 | 0.51 | |
2070s-SSP245 | 251.97 | 1 548.85 | 35.78 | 7.01 | 43.12 | 1.00 | |
2070s-SSP585 | 462.06 | 1 564.81 | 19.82 | 12.86 | 43.56 | 0.55 |
1 | Chen G X, Zhao J C, Zhao X,et al.A psammophyte Agriophyllum squarrosum (L.) Moq.:a potential food crop[J].Genetic Resources and Crop Evolution,2014,61(3):669-676. |
2 | 李胜功,常学礼,赵学勇.沙蓬:流动沙丘先锋植物的研究[J].干旱区资源与环境,1992(4):63-70. |
3 | 张继义,赵哈林,张铜会,等.科尔沁沙地植物群落恢复演替系列种群生态位动态特征[J].生态学报,2003(12):2741-2746. |
4 | Zhao P S, Li X F, Sun H,et al.Healthy values and de novo domestication of sand rice (Agriophyllum squarrosum),a comparative view against Chenopodium quinoa [J].Critical Reviews in Food Science and Nutrition,2021,10:1-22. |
5 | 中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1993. |
6 | 王荷生.植物区系地理研究[M].北京:科学出版社,1992. |
7 | Qian C J, Yin H X, Shi Y,et al.Population dynamics of Agriophyllum squarrosum,a pioneer annual plant endemic to mobile sand dunes,in response to global climate change[J].Scientific Reports,2016,6:26613. |
8 | 郑晓明,陈宝雄,宋玥,等.作物野生近缘种的原生境保护[J].植物遗传资源学报,2019,20(5):1103-1109. |
9 | 卢宝荣.杂交-渐渗的遗传进化效应与栽培作物野生近缘种多样性保护[J].科学通报,2014,59(6):479-492. |
10 | 朱耿平,刘国卿,卜文俊,等.生态位模型的基本原理及其在生物多样性保护中的应用[J].生物多样性,2013,21(1):90-98. |
11 | 李国庆,刘长成,刘玉国,等.物种分布模型理论研究进展[J].生态学报,2013,33(16):4827-4835. |
12 | McKenney D W, Pedlar J H, Lawrence K,et al.Potential impacts of climate change on the distribution of North American trees[J].Bioscience,2007,57(11):939-948. |
13 | Li J J, Fan G, He Y.Predicting the current and future distribution of three Coptis herbs in China under climate change conditions,using the MaxEnt model and chemical analysis[J].Science of the Total Environment,2020,698:134141. |
14 | Yi Y J, Zhou Y, Cai Y P,et al.The influence of climate change on an endangered riparian plant species:the root of riparian Homonoia[J].Ecological Indicators,2018,92:40-50. |
15 | 郭彦龙,赵泽芳,乔慧捷,等.物种分布模型面临的挑战与发展趋势[J].地球科学进展,2020,35(12):1292-1305. |
16 | Pearson R G, Raxworthy C J, Nakamura M,et al.Predicting species distributions from small numbers of occurrence records:a test case using cryptic geckos in Madagascar[J].Journal of Biogeography,2007,34(1):102-117. |
17 | Qian C J, Yan X, Fang T Z,et al.Genomic adaptive evolution of sand rice (Agriophyllum squarrosum) and its implications for desert ecosystem restoration[J].Frontiers in Genetics,2021,12:656061. |
18 | Huang J P, Yu H P, Dai A G,et al.Drylands face potential threat under 2 ℃ global warming target[J].Nature Climate Change,2017,7(6):417-422. |
19 | Warren D L, Glor R E, Turelli M.ENMTools:a toolbox for comparative studies of environmental niche models[J].Ecography,2010,33(3):607-611. |
20 | Fick S E, Hijmans R J.WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas[J].International Journal of Climatology,2017,37(12):4302-4315. |
21 | Wu T W, Lu Y X, Fang Y J,et al.The Beijing Climate Center Climate System Model (BCC-CSM):the main progress from CMIP5 to CMIP6[J].Geoscientific Model Development,2019,12(4):1573-1600. |
22 | Li S Y, Miao L J, Jiang Z H,et al.Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015-2099[J].Advances in Climate Change Research,2020,11(3):210-217. |
23 | Anderson R P, Gonzalez I.Species-specific tuning increases robustness to sampling bias in models of species distributions:an implementation with Maxent[J].Ecological Modelling,2011,222(15):2796-2811. |
24 | Li D X, Li Z X, Liu Z W,et al.Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China's farmland[J].Journal of Pest Science,2023, 96(1): 55-69. |
25 | Cobos M E, Peterson A T, Barve N,et al.kuenm:an R package for detailed development of ecological niche models using Maxent[J].Peerj,2019,e6281. |
26 | Zhang J J, Jiang F, Li G Y,et al.The four antelope species on the Qinghai-Tibet plateau face habitat loss and redistribution to higher latitudes under climate change[J].Ecological Indicators,2021,123:107337. |
27 | Aidoo O F, Souza P G C, da Silva R S,et al.Climate-induced range shifts of invasive species (Diaphorina citri Kuwayama)[J].Pest Management Science,2022,78(6):2534-2549. |
28 | 叶兴状,张明珠,赖文峰,等.基于MaxEnt优化模型的闽楠潜在适宜分布预测[J].生态学报,2021,41(20):8135-8144. |
29 | Elith J, Phillips S J, Hastie T,et al.A statistical explanation of MaxEnt for ecologists[J].Diversity and Distributions,2011,17(1):43-57. |
30 | Zhang J J, Jiang F, Li G Y,et al.Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park,China[J].Ecology and Evolution,2019,9(11):6643-6654. |
31 | Zhao P S, Li X F, Ran R L,et al.Precipitation and local environment shape the geographic variation of seed size across natural populations of sand rice (Agriophyllum squarrosum)[J].Journal of Experimental Botany,2022,73(16):5682-5697. |
32 | VanDerWal J, Murphy H T, Kutt A S,et al.Focus on poleward shifts in species' distribution underestimates the fingerprint of climate change[J].Nature Climate Change,2013,3(3):239-243. |
33 | Tian L, Benton M J.Predicting biotic responses to future climate warming with classic ecogeographic rules[J].Current Biology,2020,30(13):R744-R749. |
34 | Li C J, Fu B J, Wang S,et al.Drivers and impacts of changes in China's drylands[J].Nature Reviews Earth & Environment,2021,2(12):858-873. |
35 | Ye X Z, Zhao G H, Zhang M Z,et al.Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the Last Interglacial Period[J].Forests,2020,11(4):434. |
36 | 汪勇,闻志彬,张宏祥,等.中国假木贼属(Anabasis)的地理分布及潜在分布区预测[J].中国沙漠,2018,38(5):1033-1040. |
37 | Zhang Y, Gao Q Z, Dong S K,et al.Effects of grazing and climate warming on plant diversity,productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan Plateau[J].Rangeland Journal,2015,37(1):57-65. |
38 | Valladares F, Matesanz S, Guilhaumon F,et al.The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change[J].Ecology Letters,2014,17(11):1351-1364. |
39 | Ren L J, Guo X, Liu S N,et al.Intraspecific variation in Phragmites australis:clinal adaption of functional traits and phenotypic plasticity vary with latitude of origin[J].Journal of Ecology,2020,108(6):2531-2543. |
40 | 尹成亮,钱朝菊,陈国雄,等.生态分化选择对沙米(Agriophyllum squarrosum)表型多样性的影响[J].中国沙漠,2016,36(2):364-373. |
41 | 尹成亮,赵杰才,胡进玲,等.环境异质性对潜在粮食作物沙米表型变异的影响[J].中国科学:生命科学,2016,46(11):1324-1335. |
42 | 赵鹏善,冉瑞兰,李晓凤,等.流动沙丘先锋植物沙蓬遗传驯化和栽培品系初步选育[J].中国科学:生命科学,2023,53:1-14. |
43 | 于燕波,王群亮, Kell S,等.中国栽培植物野生近缘种及其保护对策[J].生物多样性,2013,21(6):750-757. |
44 | Vincent H, Amri A, Castaneda-Alvarez N P,et al.Modeling of crop wild relative species identifies areas globally for in situ conservation[J].Communications Biology,2019,2(1):136. |
[1] | Chunming Xin, Mingzhu He, Chengyi Li, Libin Zhang, Xinrong Li. A review of research progress on nitrous oxide emissions from desert soil and its driving factors [J]. Journal of Desert Research, 2023, 43(2): 184-194. |
[2] | Haixiu He, Aihong Fu, Chuan Wang. Negetation index change and its driving forces of low mountain meadow vegetation in the northwest of Tacheng Region, Xinjiang, China [J]. Journal of Desert Research, 2023, 43(1): 187-196. |
[3] | Haojun Qin, Xiaojun Yang, Li Ma, Yicheng Wang, Zhao Fu, Junxia Zhang, Zhengqi Lu. Characteristics and causes of regional sandstorms in Northwest of China from 2000 to 2020 [J]. Journal of Desert Research, 2022, 42(6): 53-64. |
[4] | Xinying Liu, Ming Jin, Fan Yang, Yapeng Ma, Hui Liu, Xiaoyun Sun, Dunsheng Xia. A preliminary study of environmental changes since middle Holocene and its impacts on the evolution of civilization in the eastern Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(5): 92-100. |
[5] | Shihua Zhu, Xia Fang, Xin Hang, Xiaoping Xie, Liangxiao Sun, Liangzhong Cao. Normalized difference vegetation index ( NDVI ) dynamics of grassland in Central Asia and its response to climate change and human activities [J]. Journal of Desert Research, 2022, 42(4): 229-241. |
[6] | Xueping Chen, Xueyong Zhao, Ruixiong Wang, Zhiying Ning, Jiannan Lu, Siteng Zhao. Research advances on the impact of climate change and LUCC for water resources in the northern agro-pastoral zone in China [J]. Journal of Desert Research, 2022, 42(3): 170-177. |
[7] | Yulai Gong, Shaoxiu Ma, Weiqi Liu. A comparative study of machine learning and statistical models in climate downscaling in the Shiyang River Basin [J]. Journal of Desert Research, 2022, 42(1): 196-210. |
[8] | Benli Liu, Wanyue Peng, Shulin Liu, Ting Yang. Estimation on the dust lift amount and source contribution of the heavy dust weather in mid-March 2021 over Central East Asia [J]. Journal of Desert Research, 2022, 42(1): 79-86. |
[9] | Yanhui Lei, Guodong Ding, Zimeng Li, Wenfeng Chi, Guanglei Gao, Yuanyuan Zhao. Land use/cover change and its ecosystem service value response in the Beijing-Tianjin sandstorm source control project area [J]. Journal of Desert Research, 2021, 41(6): 29-40. |
[10] | Xiaomei Zhang, Heling Jin, Bing Liu. Environment changes in the Hobq Desert since the Last Glacial Maximum [J]. Journal of Desert Research, 2021, 41(5): 81-93. |
[11] | Xiaohui Ma, Jiangli Pang, Xiaokang Liu, Dan Ding, Xiaoxiao Yue, Feifei Jia. Early and Middle Holocene climate change inferred by Wayaogou Section in the Southeastern Mu Us Desert [J]. Journal of Desert Research, 2021, 41(5): 71-80. |
[12] | Yongtao Ma, Xiaozong Ren, Huifang Hu, Min Liu, Qi Meng. Vegetation dynamics and its driving force in Otindag Sandy Land based on Geodetector [J]. Journal of Desert Research, 2021, 41(4): 195-204. |
[13] | Lanying Han, Qiang Zhang, Pengli Ma, Youheng Wang, Tao Huang, Jianying Jia, Xin Wang, Xiaowei Wang, Weiping Liu, Danhua Li, Guoyang Lu, Pengcheng Huang, Bing Bai. Characteristics of drought disasters risk in the Yellow River Basin under the climate warming [J]. Journal of Desert Research, 2021, 41(4): 225-234. |
[14] | Youheng Wang, Dan Tan, Lanying Han, Danhua Li, xin Wang, Guoyang Lu, Jingjing Lin. Review of climate change in the Yellow River Basin [J]. Journal of Desert Research, 2021, 41(4): 235-246. |
[15] | Xiaohui He, Jianhua Si, Chunyan Zhao, Chunlin Wang, Dongmeng Zhou. Potential distribution of Hippophae thibetana and its predicted responses to climate change [J]. Journal of Desert Research, 2021, 41(3): 101-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech