Journal of Desert Research ›› 2024, Vol. 44 ›› Issue (2): 121-132.DOI: 10.7522/j.issn.1000-694X.2023.00148
Jianhui Ge1,2(), Bing Liu1(
), Yujie Xu1,2, Aijun Sun1,2,3, Keqi Wang1,2, Dongxue Li1,2, hui Zhao1
Received:
2023-08-31
Revised:
2023-10-21
Online:
2024-03-20
Published:
2024-03-19
Contact:
Bing Liu
CLC Number:
Jianhui Ge, Bing Liu, Yujie Xu, Aijun Sun, Keqi Wang, Dongxue Li, hui Zhao. Interrelationships between climate change and surface processes in the First Meander of the Yellow River since the Last Deglaciation[J]. Journal of Desert Research, 2024, 44(2): 121-132.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00148
Fig.1 Spatial distribution map of paleoclimate environmental data in the First Meander of the Yellow River (numbers correspond to serial numbers in Table 2)
编号 | 剖面名称 | 纬度 (°N) | 经度 (°E) | 测年 方式 | 时间范围 /ka BP | 年代 数 | 分辨率 /a | 代用 指标 | 指标 意义 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
Tw1 | ZB08-C1 | 33.45 | 102.63 | AMS14C | 11.0~0 | 8 | ~60 | 孢粉 | MTwa | Liang等[ |
Tw2 | ZB10-C9 | 32.78 | 102.52 | AMS14C | 11.0~0 | 15 | ~60 | 孢粉 | MTwa | Liang等[ |
Tw3 | ZB10-C14 | 33.10 | 102.67 | AMS14C | 11.0~0 | 18 | ~60 | 孢粉 | MTwa | Liang等[ |
T1 | ZB08-C1 | 33.45 | 102.63 | AMS14C | 11.0~0 | 8 | ~60 | 孢粉 | MAT | Liang等[ |
T2 | ZB10-C9 | 32.78 | 102.52 | AMS14C | 11.0~0 | 15 | ~60 | 孢粉 | MAT | Liang等[ |
T3 | ZB10-C14 | 33.10 | 102.67 | AMS14C | 11.0~0 | 18 | ~60 | 孢粉 | MAT | Liang等[ |
T4 | HY4 | 32.78 | 102.52 | AMS14C | 13.0~0 | 8 | ~100 | BrGDGTs | MAT | Yan等[ |
T5 | Hongyuan Peats | 32.77 | 102.52 | AMS14C | 13.0~0 | 11 | ~100 | GDGTs | MAT | Zheng等[ |
P1 | Hongyuan peat | 32.77 | 102.05 | AMS14C | 12.0~0 | 15 | ~30 | 木里苔草碳同位素 | 夏季风 | Hong等[ |
P2 | Hongyuan peatland | 32.78 | 102.52 | AMS14C | 13.5~0 | 32 | ~25 | 冷杉花粉 | 夏季风 | Zhou等[ |
P3 | 红原泥炭剖面1 | 32.77 | 102.50 | AMS14C | 12.0~0 | 15 | ~30 | 腐殖化度 | 湿度 | 王华等[ |
P4 | 红原泥炭剖面2 | 32.78 | 102.52 | AMS14C | 11.5~0 | 11 | ~15-20 | 灰度 | 夏季风 | 于学峰等[ |
P5 | ZB10-C14 | 33.10 | 102.67 | AMS14C | 10.5~0 | 18 | ~60 | 针叶林相似性得分 | 湿度 | 孙晓红等[ |
Table 1 Records of paleoclimate evolution since the Last Deglaciation in the First Meander of Yellow River
编号 | 剖面名称 | 纬度 (°N) | 经度 (°E) | 测年 方式 | 时间范围 /ka BP | 年代 数 | 分辨率 /a | 代用 指标 | 指标 意义 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
Tw1 | ZB08-C1 | 33.45 | 102.63 | AMS14C | 11.0~0 | 8 | ~60 | 孢粉 | MTwa | Liang等[ |
Tw2 | ZB10-C9 | 32.78 | 102.52 | AMS14C | 11.0~0 | 15 | ~60 | 孢粉 | MTwa | Liang等[ |
Tw3 | ZB10-C14 | 33.10 | 102.67 | AMS14C | 11.0~0 | 18 | ~60 | 孢粉 | MTwa | Liang等[ |
T1 | ZB08-C1 | 33.45 | 102.63 | AMS14C | 11.0~0 | 8 | ~60 | 孢粉 | MAT | Liang等[ |
T2 | ZB10-C9 | 32.78 | 102.52 | AMS14C | 11.0~0 | 15 | ~60 | 孢粉 | MAT | Liang等[ |
T3 | ZB10-C14 | 33.10 | 102.67 | AMS14C | 11.0~0 | 18 | ~60 | 孢粉 | MAT | Liang等[ |
T4 | HY4 | 32.78 | 102.52 | AMS14C | 13.0~0 | 8 | ~100 | BrGDGTs | MAT | Yan等[ |
T5 | Hongyuan Peats | 32.77 | 102.52 | AMS14C | 13.0~0 | 11 | ~100 | GDGTs | MAT | Zheng等[ |
P1 | Hongyuan peat | 32.77 | 102.05 | AMS14C | 12.0~0 | 15 | ~30 | 木里苔草碳同位素 | 夏季风 | Hong等[ |
P2 | Hongyuan peatland | 32.78 | 102.52 | AMS14C | 13.5~0 | 32 | ~25 | 冷杉花粉 | 夏季风 | Zhou等[ |
P3 | 红原泥炭剖面1 | 32.77 | 102.50 | AMS14C | 12.0~0 | 15 | ~30 | 腐殖化度 | 湿度 | 王华等[ |
P4 | 红原泥炭剖面2 | 32.78 | 102.52 | AMS14C | 11.5~0 | 11 | ~15-20 | 灰度 | 夏季风 | 于学峰等[ |
P5 | ZB10-C14 | 33.10 | 102.67 | AMS14C | 10.5~0 | 18 | ~60 | 针叶林相似性得分 | 湿度 | 孙晓红等[ |
序号 | 类型 | 剖面 名称 | 纬度 (°N) | 经度 (°E) | 时间范围 /ka BP | 测年 手段 | 年代 数 | 代用指标 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
1 | 风成砂-古土壤序列 | section1 | 33.85 | 102.57 | 10~3.5 | OSL | 2 | 粒度、总有机碳 | Hu等[ |
2 | 风成砂-古土壤序列 | section2 | 33.93 | 102.13 | 3~0.5 | OSL | 5 | 粒度、总有机碳 | Hu等[ |
3 | 风成砂-古土壤序列 | section3 | 33.78 | 102.18 | 1~0 | OSL | 3 | 粒度、总有机碳 | Hu等[ |
4 | 风成砂-古土壤序列 | MQQ | 33.96 | 102.08 | 10~0 | AMS14C | 6 | 粒度、磁化率 | Yang等[ |
5 | 风成砂-古土壤序列 | 剖面P.5 | — | — | — | 14C | 1 | — | 徐先英等[ |
6 | 风成砂-古土壤序列 | 剖面P.6 | — | — | 3.5~0.5 | 14C | 2 | — | 徐先英等[ |
7 | 风成砂-古土壤序列 | 剖面P.9 | — | — | — | 14C | 1 | — | 徐先英等[ |
8 | 风成砂-古土壤序列 | 剖面P.10 | — | — | 1.5~0.5 | 14C | 2 | — | 徐先英等[ |
9 | 风成砂-古土壤序列 | 剖面P.21 | — | — | 1.5~0 | 14C | 2 | — | 徐先英等[ |
10 | 风成砂-古土壤序列 | MO | 33.90 | 102.16 | 6~0 | 14C | 5 | 地化元素 | 胡梦珺等[ |
11 | 风成砂-古土壤序列 | OL | 33.94 | 102.02 | 5.5~0 | 14C | 5 | 地化元素 | 杨爱丽[ |
12 | 风成砂-古土壤序列 | LQXR | 33.95 | 102.07 | 7.5~1 | OSL | 4 | 粒度 | 周家和等[ |
13 | 风成砂-古土壤序列 | LQXA | 33.77 | 102.21 | 4~0.5 | OSL | 7 | 粒度 | 周家和等[ |
14 | 风成砂-古土壤序列 | XCC | 34.08 | 102.58 | 4.5~1.5 | OSL | 5 | 粒度、磁化率、地化元素 | 柴佳楠等[ |
15 | 风成砂-古土壤序列 | XM | 33.7 | 102.53 | 16~1 | AMS14C | 5 | 粒度、磁化率 | 綦琳等[ |
16 | 风成砂-古土壤序列 | OQC | — | — | 18~0 | OSL | 5 | 粒度 | 王娜等[ |
17 | 风成砂-古土壤序列 | WQD | — | — | 18~0 | OSL, AMS14C | 6 | 粒度 | 周家和等[ |
18 | 风成砂-古土壤序列 | AB | — | — | 1.5~0.5 | AMS14C | 2 | 粒度、重矿物 | 邹学勇等[ |
19 | 风成砂-古土壤序列 | EF | — | — | — | AMS14C | 1 | 粒度、重矿物 | 邹学勇等[ |
20 | 风成砂-古土壤序列 | MN | — | — | — | AMS14C | 1 | 粒度、重矿物 | 邹学勇等[ |
21 | 风成砂-古土壤序列 | GH | — | — | — | AMS14C | 1 | 粒度、重矿物 | 邹学勇等[ |
22 | 风成砂-古土壤序列 | IJ | — | — | — | AMS14C | 1 | 粒度、重矿物 | 邹学勇等[ |
23 | 风成砂-古土壤序列 | PQ | — | — | — | AMS14C | 1 | 粒度、重矿物 | 邹学勇等[ |
24 | 黄土-古土壤序列 | TWR | 33.99 | 101.92 | 13.5~8.5 | OSL | 4 | 粒度、磁化率、地化元素等 | 陈莹璐等[ |
25 | 黄土-古土壤序列 | DEQ-E | 34.00 | 101.90 | 18~1 | OSL | 7 | 粒度、磁化率 | 肖奇立等[ |
26 | 黄土-古土壤序列 | ZHK | 34.02 | 101.89 | 14~0 | OSL, AMS14C | 5 | 粒度、磁化率 | Jia等[ |
27 | 河湖相沉积 | WDT | 33.45 | 102.45 | 5~0 | OSL | 3 | 粒度、磁化率、地化元素 | 柴佳楠等[ |
28 | 河湖相沉积 | LQ | 33.76 | 102.24 | 9.5~0 | OSL, 14C | 6 | 粒度、磁化率、地化元素等 | 左海玲[ |
29 | 河湖相沉积 | DEQ | 34.01 | 101.88 | 18~0 | OSL | 4 | 粒度、磁化率、地化元素等 | 戎晓庆[ |
30 | 河湖相沉积 | JYM | 33.53 | 102.48 | 18~0 | OSL | 14 | 粒度、磁化率、地化元素等 | 戎晓庆[ |
31 | 河湖相沉积 | 剖面P.7 | — | — | 12~2 | AMS14C | 3 | — | 徐先英等[ |
Table 2 Record of paleoenvironmental/surface processes in the First Meander of the Yellow River since the Last Deglaciation
序号 | 类型 | 剖面 名称 | 纬度 (°N) | 经度 (°E) | 时间范围 /ka BP | 测年 手段 | 年代 数 | 代用指标 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
1 | 风成砂-古土壤序列 | section1 | 33.85 | 102.57 | 10~3.5 | OSL | 2 | 粒度、总有机碳 | Hu等[ |
2 | 风成砂-古土壤序列 | section2 | 33.93 | 102.13 | 3~0.5 | OSL | 5 | 粒度、总有机碳 | Hu等[ |
3 | 风成砂-古土壤序列 | section3 | 33.78 | 102.18 | 1~0 | OSL | 3 | 粒度、总有机碳 | Hu等[ |
4 | 风成砂-古土壤序列 | MQQ | 33.96 | 102.08 | 10~0 | AMS14C | 6 | 粒度、磁化率 | Yang等[ |
5 | 风成砂-古土壤序列 | 剖面P.5 | — | — | — | 14C | 1 | — | 徐先英等[ |
6 | 风成砂-古土壤序列 | 剖面P.6 | — | — | 3.5~0.5 | 14C | 2 | — | 徐先英等[ |
7 | 风成砂-古土壤序列 | 剖面P.9 | — | — | — | 14C | 1 | — | 徐先英等[ |
8 | 风成砂-古土壤序列 | 剖面P.10 | — | — | 1.5~0.5 | 14C | 2 | — | 徐先英等[ |
9 | 风成砂-古土壤序列 | 剖面P.21 | — | — | 1.5~0 | 14C | 2 | — | 徐先英等[ |
10 | 风成砂-古土壤序列 | MO | 33.90 | 102.16 | 6~0 | 14C | 5 | 地化元素 | 胡梦珺等[ |
11 | 风成砂-古土壤序列 | OL | 33.94 | 102.02 | 5.5~0 | 14C | 5 | 地化元素 | 杨爱丽[ |
12 | 风成砂-古土壤序列 | LQXR | 33.95 | 102.07 | 7.5~1 | OSL | 4 | 粒度 | 周家和等[ |
13 | 风成砂-古土壤序列 | LQXA | 33.77 | 102.21 | 4~0.5 | OSL | 7 | 粒度 | 周家和等[ |
14 | 风成砂-古土壤序列 | XCC | 34.08 | 102.58 | 4.5~1.5 | OSL | 5 | 粒度、磁化率、地化元素 | 柴佳楠等[ |
15 | 风成砂-古土壤序列 | XM | 33.7 | 102.53 | 16~1 | AMS14C | 5 | 粒度、磁化率 | 綦琳等[ |
16 | 风成砂-古土壤序列 | OQC | — | — | 18~0 | OSL | 5 | 粒度 | 王娜等[ |
17 | 风成砂-古土壤序列 | WQD | — | — | 18~0 | OSL, AMS14C | 6 | 粒度 | 周家和等[ |
18 | 风成砂-古土壤序列 | AB | — | — | 1.5~0.5 | AMS14C | 2 | 粒度、重矿物 | 邹学勇等[ |
19 | 风成砂-古土壤序列 | EF | — | — | — | AMS14C | 1 | 粒度、重矿物 | 邹学勇等[ |
20 | 风成砂-古土壤序列 | MN | — | — | — | AMS14C | 1 | 粒度、重矿物 | 邹学勇等[ |
21 | 风成砂-古土壤序列 | GH | — | — | — | AMS14C | 1 | 粒度、重矿物 | 邹学勇等[ |
22 | 风成砂-古土壤序列 | IJ | — | — | — | AMS14C | 1 | 粒度、重矿物 | 邹学勇等[ |
23 | 风成砂-古土壤序列 | PQ | — | — | — | AMS14C | 1 | 粒度、重矿物 | 邹学勇等[ |
24 | 黄土-古土壤序列 | TWR | 33.99 | 101.92 | 13.5~8.5 | OSL | 4 | 粒度、磁化率、地化元素等 | 陈莹璐等[ |
25 | 黄土-古土壤序列 | DEQ-E | 34.00 | 101.90 | 18~1 | OSL | 7 | 粒度、磁化率 | 肖奇立等[ |
26 | 黄土-古土壤序列 | ZHK | 34.02 | 101.89 | 14~0 | OSL, AMS14C | 5 | 粒度、磁化率 | Jia等[ |
27 | 河湖相沉积 | WDT | 33.45 | 102.45 | 5~0 | OSL | 3 | 粒度、磁化率、地化元素 | 柴佳楠等[ |
28 | 河湖相沉积 | LQ | 33.76 | 102.24 | 9.5~0 | OSL, 14C | 6 | 粒度、磁化率、地化元素等 | 左海玲[ |
29 | 河湖相沉积 | DEQ | 34.01 | 101.88 | 18~0 | OSL | 4 | 粒度、磁化率、地化元素等 | 戎晓庆[ |
30 | 河湖相沉积 | JYM | 33.53 | 102.48 | 18~0 | OSL | 14 | 粒度、磁化率、地化元素等 | 戎晓庆[ |
31 | 河湖相沉积 | 剖面P.7 | — | — | 12~2 | AMS14C | 3 | — | 徐先英等[ |
Fig.7 Natural distribution frequency curve of surface meadow soil and end-element grain size of meadow soil profile in the First Meander of Yellow River and its surrounding area
1 | 计伟,刘海江,高吉喜,等.黄河流域生态质量时空变化分析[J].环境科学研究,2021,34(7):1700-1709. |
2 | 黄春长.若尔盖盆地河流古洪水沉积及其对黄河水系演变问题的启示[J].地理学报,2021,76(3):612-625. |
3 | 王娜,查小春,黄春长,等.青藏高原东部黄河切开若尔盖湖盆的沉积证据与年代研究[J].地理科学进展,2022,41(8):1453-1466. |
4 | 任继周,林慧龙.江河源区草地生态建设构想[J].草业学报,2005,14(2):1-8. |
5 | 王辉,任继周,袁宏波.黄河源区天然草地沙化机理分析研究[J].草业学报,2006,15(6):19-25. |
6 | 孙晓红,赵艳,李泉.青藏高原东部若尔盖盆地全新世泥炭地发育和植被变化[J].中国科学:地球科学,2017,47(9):1097-1109. |
7 | Liang C, Zhao Y, Qin F,et al.Pollen-based Holocene quantitative temperature reconstruction on the eastern Tibetan Plateau using a comprehensive method framework[J].Science China Earth Sciences,2020,63(8):1144-1160. |
8 | Zhao Y, Yu Z C, Zhao W W.Holocene vegetation and climate histories in the eastern Tibetan Plateau:controls by insolation-driven temperature or monsoon-derived precipitation changes?[J].Quaternary Science Reviews,2011,30(9/10):1173-1184. |
9 | Zhou W J, Yu S Y, Burr G S,et al.Postglacial changes in the Asian summer monsoon system:a pollen record from the eastern margin of the Tibetan Plateau[J].Boreas,2010,39:528-539. |
10 | Hu G Y, Yu L P, Dong Z B,et al.Holocene aeolian activity in the Zoige Basin,northeastern Tibetan Plateau,China[J].Catena,2018,160:321-328. |
11 | 周家和,周亚利,黄春长,等.全新世若尔盖盆地沙丘光释光测年与风沙活动研究[J].第四纪研究,2022,42(5):1349-1362. |
12 | Wu D, Zhang C B, Wang T,et al.East-west asymmetry in the distribution of rainfall in the Chinese Loess Plateau during the Holocene[J].Catena,2021,207:105626. |
13 | 左海玲.郎曲剖面记录的全新世以来玛曲高原的沉积环境演变[D].兰州:西北师范大学,2016. |
14 | 戎晓庆.青藏高原东部若尔盖盆地甲央玛剖面OSL测年及其意义[D].西安:陕西师范大学,2020. |
15 | Jia Y N, Zhang Y Z, Huang C C,et al.Late Pleistocene-Holocene aeolian loess-paleosol sections in the Yellow River source area on the northeast Tibetan Plateau:chronostratigraphy,sediment provenance,and implications for paleoclimate reconstruction[J].Catena,2022,208:105777. |
16 | 胡梦珺,杨爱丽,张文丽.常量元素氧化物含量及其比值揭示的中晚全新世以来玛曲高原的环境演变[J].中国沙漠,2015,35(2):313-321. |
17 | 柴佳楠,查小春,黄春长,等.若尔盖盆地黄河辖曼段河岸沉积物成因判别[J].兰州大学学报(自然科学版),2021,57(5):600-607. |
18 | 柴佳楠.若尔盖盆地一级河流阶地沉积物测年及阶地形成过程研究[D].西安:陕西师范大学,2021. |
19 | Wang N, Zha X C, Huang C C,et al.Age and causes of the Yellow River dissecting the Zoige Basin in the eastern Tibetan Plateau,China[J].Science of the Total Environment,2023,857:159481. |
20 | 徐先英,唐进年,金红喜.黄河首曲高寒草地沙化防治研究[M].兰州:甘肃科学技术出版社,2019:1-52. |
21 | 肖奇立,陈豆,张玉柱,等.黄河源玛曲段末次冰消期以来古洪水事件与冻融褶皱现象研究[J].第四纪研究,2022,42(4):1010-1026. |
22 | Yan T L, Zhao C, Yan H,et al.Elevational differences in Holocene thermal maximum revealed by quantitative temperature reconstructions at ~30° N on eastern Tibetan Plateau[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2021,570:110364. |
23 | Hong Y T, Hong B, Lin Q H,et al.Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene[J].Earth and Planetary Science Letters,2003,211(3/4):371-380. |
24 | 王华,洪业汤,朱咏煊,等.青藏高原泥炭腐殖化度的古气候意义[J].科学通报,2004,49(7):686-691. |
25 | Zheng Y, Li Q, Wang Z,et al.Peatland GDGT records of Holocene climatic and biogeochemical responses to the Asian Monsoon[J].Organic Geochemistry,2015,87:86-95. |
26 | 于学峰,周卫健, Franzen L G,等.青藏高原东部全新世冬夏季风变化的高分辨率泥炭记录[J].中国科学(D辑:地球科学),2006,36(2):182-187. |
27 | Yang S L, Liu X J, Cheng T,et al.Stepwise weakening of aeolian activities during the Holocene in the Gannan region,Eastern Tibetan Plateau[J].Frontiers in Earth Science,2021,9:677-686. |
28 | 胡梦珺,左海玲,潘宁惠,等.中晚全新世以来玛曲高原的化学风化过程演变[J].中国沙漠,2016,36(3):623-635. |
29 | 杨爱丽.地化学元素揭示的中晚全新世以来玛曲高原的成壤环境演变[D].兰州:西北师范大学,2015. |
30 | 綦琳,王燕,蔡遥,等.若尔盖风成砂-古土壤序列的古气候与古环境记录研究[J].地质力学学报,2020,26(2):244-251. |
31 | 周家和,周亚利,黄春长,等.若尔盖黄河唐克段河岸沉积序列测年及地表过程变化[J].冰川冻土,2022,44(4):1188-1202. |
32 | 邹学勇,王贵勇.黄河上游玛曲地区晚全新世沙漠化[J].中国沙漠,1995,15(1):65-70. |
33 | 陈莹璐,黄春长,张玉柱,等.黄河源区玛曲段末次冰消期古洪水事件及其光释光测年研究[J].冰川冻土,2017,39(3):549-562. |
34 | 陈莹璐.黄河玛曲段和汝河遂平段古洪水事件年代及其气候背景对比研究[D].西安:陕西师范大学,2018. |
35 | Xu Z W, Mason J A, Xu C,et al.Critical transitions in Chinese dunes during the past 12,000 years[J].Science Advances,2020,6(9):8020. |
36 | 张小梅,靳鹤龄,刘冰.末次盛冰期以来库布齐沙漠环境变化[J].中国沙漠,2021,41(5):81-93. |
37 | 徐宇杰,刘冰,孙爱军,等.古尔班通古特沙漠及周边区域全新世环境演变研究进展[J].干旱区地理,2023,46(4):550-562. |
38 | Liu B, Zhao H, Li S H,et al.Asynchronous paleosol development during the past 20 ka in response to climate change across the dune fields of the Asian summer monsoonal boundary,northern China[J].Earth-Science Reviews,2022,234:104232. |
39 | Liu B, Zhao H, Yang F,et al.A new aeolian activity proxy based on analysis of the grain size characteristics of surface soils across the Tengger Desert,northwest China,and its application to a Quaternary aeolian succession[J].Paleogeography,Palaeoclimatology,Paleoecology,2023,622:111594. |
40 | Zhang J, E C Y, Wu C Y,et al.An alpine meadow soil chronology based on OSL and radiocarbon dating,Qinghai Lake,northeastern Tibetan Plateau[J].Quaternary International,2020,562:35-45. |
41 | Qiang M, Jin Y, Liu X,et al.Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin,northeastern Qinghai-Tibetan Plateau:variability,processes,and climatic implications [J].Quaternary Science Reviews,2016,132:57-73. |
42 | Sun D H, Bloemendal J, Rea D,et al.Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments,and numerical partitioning of the sedimentary components[J].Sedimentary Geology,2002,152(3/4):263-277. |
43 | Liu X X, Sun Y B, Vandenberghe J,et al.Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau[J].Aeolian Research,2018,32:202-209. |
44 | Liu Y M, Liu X X, Sun Y.QGrain:an open-source and easy-to-use software for the comprehensive analysis of grain size distributions[J].Sedimentary Geology,2021,423:105980. |
45 | Peng J, Wang X L, Yin G M,et al.Accumulation of aeolian sediments around the Tengger Desert during the late Quaternary and its implications on interpreting chronostratigraphic records from drylands in north China[J].Quaternary Science Reviews,2022,275:107288. |
46 | Peng J, Zhao H, Dong Z B,et al.Numerical methodologies and tools for efficient and flexible unmixing of single-sample grain-size distributions:application to late Quaternary aeolian sediments from the desert-loess transition zone of the Tengger Desert[J].Sedimentary Geology,2022,438:106211. |
47 | 王兆夺,黄春长,周亚利,等.若尔盖盆地黄河第一湾河岸沉积地层序列及其成因研究[J].冰川冻土,2022,44(4):1175-1187. |
48 | Zhang J, E C Y, Yang F,et al.OSL ages and pedogenic mode of Kobresia mattic epipedon on the northeastern Qinghai-Tibetan Plateau[J].Catena,2023,223:106912. |
49 | Lin Y C, Feng J L.Aeolian dust contribution to the formation of alpine soils at Amdo (Northern Tibetan Plateau)[J].Geoderma,2015,259/260:104-115. |
[1] | Qing Li, Na Zhou, Sheng Wang, Tongzhou Li, Rende Wang, Jinfeng Wang. Quantitative assessment the impacts of climate change and human actives on wind erosion: a case study of Inner Mongolia Autonomous Region [J]. Journal of Desert Research, 2024, 44(1): 178-188. |
[2] | Xiao Feng, Jianjun Qu, Xinhui Ding, Qin Tian, Qingbin Fan. Temporal and spatial pattern of NPP in Yulin and its influencing factors during the desertification reversal [J]. Journal of Desert Research, 2024, 44(1): 22-32. |
[3] | Yanzhuo Zhao, Yuanyun Xie, Chunguo Kang, Yunping Chi, Lei Sun, Peng Wu, Zhenyu Wei. Holocene climate change recorded by paleosoil profile in Hulun Buir Sandy Land [J]. Journal of Desert Research, 2023, 43(5): 85-96. |
[4] | Jianbing Lu, Ke Ju, Weibin Liao. Variation in NDVI and its response to climate change and human activities in Gansu Province during 2000-2020 [J]. Journal of Desert Research, 2023, 43(4): 118-127. |
[5] | Qi You, Baorong Xu, Songbing Zou, Yihao Qin, Duo Wang, Dong Yu. The vegetation-climate quantitative relationship and characteristics in arid and semi-arid region of northern China [J]. Journal of Desert Research, 2023, 43(4): 274-287. |
[6] | Yaozong Wang, Xinbin Yue, Jiali Xie, Zhipeng Liu, Yuan Ma, Yahui Wang, Yan Gong. Desertification evolution in the sandy region to the east of the Yellow River in Ningxia from 2000 to 2020 [J]. Journal of Desert Research, 2023, 43(4): 31-40. |
[7] | Pengfei Liang, Huijuan Xin, Zongxing Li, Fusen Nan, Biao Tang, Wenbao Zhang. Study on the attribution of runoff variation in the Danghe River based on the Budyko hypothesis [J]. Journal of Desert Research, 2023, 43(3): 210-219. |
[8] | Ran Duan, Zongjie Li, Yu Wang, Xiaoying Liu, Juan Gui, Pengfei Liang, Yuchen Li, Jian Xue, Mengqing Liu, Bin Xu. Characteristics of runoff change in the Shiyang River Basin [J]. Journal of Desert Research, 2023, 43(3): 57-68. |
[9] | Ziyan Han, Jijun Meng, Yi Zou, Likai Zhu. Vegetation dynamics and their response to climate change and ecological protection projects in the Heihe River Basin from 1982 to 2017 [J]. Journal of Desert Research, 2023, 43(3): 96-106. |
[10] | Chunming Xin, Mingzhu He, Chengyi Li, Libin Zhang, Xinrong Li. A review of research progress on nitrous oxide emissions from desert soil and its driving factors [J]. Journal of Desert Research, 2023, 43(2): 184-194. |
[11] | Hong Sun, Jiyun Duan, Yujie Liu, Ruilan Ran, Xiaofeng Li, Pengshan Zhao. Potential distribution of the genus Agriophyllum under climate change [J]. Journal of Desert Research, 2023, 43(2): 255-263. |
[12] | Haixiu He, Aihong Fu, Chuan Wang. Negetation index change and its driving forces of low mountain meadow vegetation in the northwest of Tacheng Region, Xinjiang, China [J]. Journal of Desert Research, 2023, 43(1): 187-196. |
[13] | Haojun Qin, Xiaojun Yang, Li Ma, Yicheng Wang, Zhao Fu, Junxia Zhang, Zhengqi Lu. Characteristics and causes of regional sandstorms in Northwest of China from 2000 to 2020 [J]. Journal of Desert Research, 2022, 42(6): 53-64. |
[14] | Xinying Liu, Ming Jin, Fan Yang, Yapeng Ma, Hui Liu, Xiaoyun Sun, Dunsheng Xia. A preliminary study of environmental changes since middle Holocene and its impacts on the evolution of civilization in the eastern Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(5): 92-100. |
[15] | Shihua Zhu, Xia Fang, Xin Hang, Xiaoping Xie, Liangxiao Sun, Liangzhong Cao. Normalized difference vegetation index ( NDVI ) dynamics of grassland in Central Asia and its response to climate change and human activities [J]. Journal of Desert Research, 2022, 42(4): 229-241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech