Journal of Desert Research ›› 2022, Vol. 42 ›› Issue (1): 96-107.DOI: 10.7522/j.issn.1000-694X.2021.00123
Previous Articles Next Articles
Huanhuan Meng1,2(), Yuanyuan Zhang1,2, Xiaobing Zhou2, Benfeng Yin2, Duoqi Zhou1, Ye Tao2(
)
Received:
2021-06-24
Revised:
2021-10-08
Online:
2022-01-20
Published:
2022-01-28
Contact:
Ye Tao
CLC Number:
Huanhuan Meng, Yuanyuan Zhang, Xiaobing Zhou, Benfeng Yin, Duoqi Zhou, Ye Tao. Biomass allocation patterns of herbaceous plants in the Gurbantunggut Desert[J]. Journal of Desert Research, 2022, 42(1): 96-107.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2021.00123
物种 | 密度/(株·m-2) | 频度 | 相对密度/% | 相对频度/% |
---|---|---|---|---|
囊果苔草(Carex physodes) | 137.68 | 99 | 72.16 | 39.29 |
尖喙牻牛儿苗(Erodium oxyrhinchum) | 31.20 | 73 | 16.35 | 28.97 |
琉苞菊(Hyalea pulchella) | 0.56 | 4 | 0.29 | 1.59 |
刺沙蓬(Salsola ruthenica) | 0.72 | 13 | 0.38 | 5.16 |
齿稃草(Schismus arabicus) | 10.44 | 14 | 5.47 | 5.56 |
旱麦草(Eremopyrum triticeum) | 4.24 | 9 | 2.22 | 3.57 |
角果藜(Ceratocarpus arenarius) | 3.84 | 20 | 2.01 | 7.94 |
黑鳞顶冰花(Gagea nigra) | 0.04 | 1 | 0.02 | 0.40 |
疏齿千里光(Senecio subdentatus) | 0.04 | 1 | 0.02 | 0.40 |
土大戟(Euphorbia turczaninowii) | 0.08 | 2 | 0.04 | 0.79 |
对节刺(Horaninowia ulicina) | 0.56 | 5 | 0.29 | 1.98 |
弯果葫芦巴(Trigonella ammophilus) | 0.08 | 2 | 0.04 | 0.79 |
假狼紫草(Nonea caspica) | 0.28 | 4 | 0.15 | 1.59 |
条叶庭荠(Alyssum linifolium) | 0.68 | 4 | 0.36 | 1.59 |
沙蓬(Agriophyllum squarrosum) | 0.36 | 1 | 0.19 | 0.40 |
总体 | 190.8 | 252 | 100 | 100 |
Table 1 Density and frequency of each species of herbaceous plant layer in the Gurbantunggut Desert
物种 | 密度/(株·m-2) | 频度 | 相对密度/% | 相对频度/% |
---|---|---|---|---|
囊果苔草(Carex physodes) | 137.68 | 99 | 72.16 | 39.29 |
尖喙牻牛儿苗(Erodium oxyrhinchum) | 31.20 | 73 | 16.35 | 28.97 |
琉苞菊(Hyalea pulchella) | 0.56 | 4 | 0.29 | 1.59 |
刺沙蓬(Salsola ruthenica) | 0.72 | 13 | 0.38 | 5.16 |
齿稃草(Schismus arabicus) | 10.44 | 14 | 5.47 | 5.56 |
旱麦草(Eremopyrum triticeum) | 4.24 | 9 | 2.22 | 3.57 |
角果藜(Ceratocarpus arenarius) | 3.84 | 20 | 2.01 | 7.94 |
黑鳞顶冰花(Gagea nigra) | 0.04 | 1 | 0.02 | 0.40 |
疏齿千里光(Senecio subdentatus) | 0.04 | 1 | 0.02 | 0.40 |
土大戟(Euphorbia turczaninowii) | 0.08 | 2 | 0.04 | 0.79 |
对节刺(Horaninowia ulicina) | 0.56 | 5 | 0.29 | 1.98 |
弯果葫芦巴(Trigonella ammophilus) | 0.08 | 2 | 0.04 | 0.79 |
假狼紫草(Nonea caspica) | 0.28 | 4 | 0.15 | 1.59 |
条叶庭荠(Alyssum linifolium) | 0.68 | 4 | 0.36 | 1.59 |
沙蓬(Agriophyllum squarrosum) | 0.36 | 1 | 0.19 | 0.40 |
总体 | 190.8 | 252 | 100 | 100 |
指标 | 参数 | 全部物种 | 除去囊果苔草 | 囊果苔草 |
---|---|---|---|---|
地上生物量/(g·m-2) | 生物量范围 | 0.690—17.616 | 0—17.058 | 0.135—11.243 |
均值±标准误 | 5.599±0.268 | 2.316±0.305 | 3.283±0.212 | |
地下生物量/(g·m-2) | 生物量范围 | 1.147—129.820 | 0—2.048 | 1.414—129.820 |
均值±标准误 | 42.687±2.936 | 0.316±0.039 | 42.371±2.955 | |
总生物量/(g·m-2) | 生物量范围 | 2.958—140.283 | 0—19.106 | 1.550—140.283 |
均值±标准误 | 48.286±2.976 | 2.632±0.341 | 45.654±3.135 | |
根冠比 | 范围 | 0.165—34.436 | 0—0.476 | 4.420—34.436 |
均值±标准误 | 8.799±0.623 | 0.162±0.009 | 12.883±0.567 |
Table 2 Aboveground biomass, belowground biomass, and root/shoot biomass ratio of herbaceous plant layer in the Gurbantunggut Desert
指标 | 参数 | 全部物种 | 除去囊果苔草 | 囊果苔草 |
---|---|---|---|---|
地上生物量/(g·m-2) | 生物量范围 | 0.690—17.616 | 0—17.058 | 0.135—11.243 |
均值±标准误 | 5.599±0.268 | 2.316±0.305 | 3.283±0.212 | |
地下生物量/(g·m-2) | 生物量范围 | 1.147—129.820 | 0—2.048 | 1.414—129.820 |
均值±标准误 | 42.687±2.936 | 0.316±0.039 | 42.371±2.955 | |
总生物量/(g·m-2) | 生物量范围 | 2.958—140.283 | 0—19.106 | 1.550—140.283 |
均值±标准误 | 48.286±2.976 | 2.632±0.341 | 45.654±3.135 | |
根冠比 | 范围 | 0.165—34.436 | 0—0.476 | 4.420—34.436 |
均值±标准误 | 8.799±0.623 | 0.162±0.009 | 12.883±0.567 |
数据类型 | 相关生长指数 | 等速生长检验 | |||||
---|---|---|---|---|---|---|---|
R2 | P | α | 95%CI | F | P | 类型 | |
全部物种 | 0.011 | 0.296 | — | — | — | — | — |
去除囊果苔草 | 0.855 | <0.001 | 0.9232 | 0.845—1.009 | 3.219 | 0.077 | 等速关系 |
囊果苔草 | 0.841 | <0.001 | 1.151 | 1.062—1.247 | 12.123 | 0.001 | 异速关系 |
Table 3 Allocation patterns between aboveground biomass (AGB) and belowground biomass (BGB) in herbaceous plant layer in the Gurbantunggut Desert
数据类型 | 相关生长指数 | 等速生长检验 | |||||
---|---|---|---|---|---|---|---|
R2 | P | α | 95%CI | F | P | 类型 | |
全部物种 | 0.011 | 0.296 | — | — | — | — | — |
去除囊果苔草 | 0.855 | <0.001 | 0.9232 | 0.845—1.009 | 3.219 | 0.077 | 等速关系 |
囊果苔草 | 0.841 | <0.001 | 1.151 | 1.062—1.247 | 12.123 | 0.001 | 异速关系 |
1 | 陶冶,张元明.中亚干旱荒漠区植被碳储量估算[J].干旱区地理,2013,36(4):615-622. |
2 | Wang X Q,Jiang J,Lei J Q.Distribution of ephemeral plants and their significance in dune stabilization in Gurbantunggut Desert[J].Journal of Geographical Sciences,2003,58(3):598-605. |
3 | 王雪芹,蒋进,雷加强,等.短命植物分布与沙垄表层土壤水分的关系:以古尔班通古特沙漠为例[J].应用生态学报,2004,15(4):556-560. |
4 | 袁素芬,唐海萍.新疆准噶尔荒漠短命植物群落特征及其水热适应性[J].生物多样性,2010(4):346-354. |
5 | 毛祖美,张佃民.新疆北部早春短命植物区系纲要[J].干旱区研究,1994(3):1-26. |
6 | 张立运,陈昌笃.论古尔班通古特沙漠植物多样性的一般特点[J].生态学报,2002,22(11):1923-1932. |
7 | Gilliam F S.The ecological significance of the Herbaceous Layer in temperate forest ecosystems [J].BioScience,2007,57(10):845-858. |
8 | 陶冶,张元明.3种荒漠植物群落物种组成与丰富度的季节变化及地上生物量特征[J].草业学报,2011,20(6):1-11. |
9 | 张立运.新疆莫索湾地区短命植物的初步研究[J].植物生态学与地植物学丛刊,1985(3):213-222. |
10 | Huang G,Su Y G,Zhu L,et al.The role of spring ephemerals and soil microbes in soil nutrient retention in a temperate desert[J].Plant & Soil,2016,406(1/2):43-54. |
11 | 张荣,刘彤.古尔班通古特沙漠南部植物多样性及群落分类[J].生态学报,2012,32(19):6056-6066. |
12 | 李雪华,李晓兰,蒋德明,等.科尔沁沙地70种草本植物个体和构件生物量比较研究[J].干旱区研究,2009(2):54-59. |
13 | 陶冶,张元明.准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J].草业学报,2014,23(2):38-48. |
14 | Fan L L,Ding J X,Ma X,et al.Ecological biomass allocation strategies in plant species with different life forms in a cold desert,China[J].Journal of Arid Land,2019,11(5):95-105. |
15 | 丁俊祥.古尔班通古特沙漠南缘沙垄表面草本植物分布特征及生物量分配研究[D].北京:中国科学院大学,2015. |
16 | 丁俊祥,范连连,李彦,等.古尔班通古特沙漠6种荒漠草本植物的生物量分配与相关生长关系[J].中国沙漠,2016,36(5):1323-1330. |
17 | 赵晶,汪溪远.古尔班通古特沙漠南缘3种生活型草本植物生物量分配及相关生长关系[J].植物研究,2017(2):304-311. |
18 | Wang L,Niu K C,Yang Y H,et al.Patterns of above- and belowground biomass allocation in China's grasslands:evidence from individual-level observations[J].Science China,2010,53(7):851-857. |
19 | Yang Y H,Fang J Y,Ji C J,et al.Above- and belowground biomass allocation in Tibetan grasslands[J].Journal of Vegetation Science,2009,20(1):177-184. |
20 | 程栋梁.植物生物量分配模式与生长速率的相关规律研究[D].兰州:兰州大学,2007. |
21 | 王敏,苏永中,杨荣,等.黑河中游荒漠草地地上和地下生物量的分配格局[J].植物生态学报,2014,37(3):209-219. |
22 | 陶冶.准噶尔荒漠典型植物群落生物量的分配、估测与空间分布[D].北京:中国科学院大学,2014. |
23 | 王长庭,曹广民,王启兰,等.青藏高原高寒草甸植物群落物种组成和生物量沿环境梯度的变化[J].中国科学C辑:生命科学,2007(5):585-592. |
24 | Niklas K J,Cheng D L.Above-and below-ground biomass relationships across 1534 forested communities[J].Annals of Botany,2007,99(1):95-102. |
25 | Mccarthy M C,Enquist B J.Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J].Functional Ecology,2007,21(4):713-720. |
26 | Poorter H,Nagel O.The role of biomass allocation in the growth response of plants to different levels of light,CO2,nutrients and water: a quantitative review[J].Australian Journal of Plant Physiology,2000,27:595-607. |
27 | Enquist B J.Global Allocation rules for patterns of biomass partitioning in seed plants[J].Science,2002,295:1517-1520. |
28 | West G B,Brown J H,Enquist B J.A general model for the structure and allometry of plant vascular systems[J].Nature,1999,400(6745):664-667. |
29 | 张元明,王雪芹.准噶尔荒漠生物结皮研究[M].北京:科学出版社,2008. |
30 | 韩文轩,方精云.幂指数异速生长机制模型综述[J].植物生态学报,2008,32(4):951-960. |
31 | West G B,Brown J H,Enquist B J.A general model for the origin of allometric scaling laws in biology[J].Science,1997,276:122-126. |
32 | Niklas K J,Enquist B J.Invariant scaling relationships for interspecific plant biomass production rates and body size[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(5):2922-2927. |
33 | Niklas K J.Plant allometry:Is there a grand unifying theory?[J].Biological Reviews,2004,79(4):871-889. |
34 | Falster D.(S)MATR:standardised major axis tests and routines[Z].Version 1.0.2003. |
35 | Waide R B,Willig M R,Steiner C F,et al.The relationship between productivity and species richness[J].Annual Review of Ecology and Systematics,1999,30:257-300. |
36 | Yoda K,Kira T,Ogawa H.Self-thinning in overcrowded pure stands under cultivated and natural conditions[J].Journal of Biology,1963,14(1):107-129. |
37 | Enquist B J,Brown J H,West G B.Plant energetics and population density-Reply[J].Nature,1999,398:573-573. |
38 | 黎磊,周道玮,盛连喜.密度制约决定的植物生物量分配格局[J].生态学杂志,2011(8):1579-1589. |
39 | Kollmann J,Dietz H,Edwards P J.Allocation,plasticity and allometry[J].Perspectives in Plant Ecology Evolution & Systematics,2004,6(4):205-206. |
40 | 杜美琪,张恒硕,彭栋,等.冀西北中低山区灌草群落生物量分配及其与土壤因子的关系[J].草业科学,2020,37(1):1-9. |
41 | 方昭,张少康,刘海威,等.黄土丘陵区草本群落生物量空间分布格局及其影响因素[J].草业学报,2018,27(2):26-35. |
42 | Poorter H,Sack L.Pitfalls and possibilities in the analysis of biomass allocation patterns in plants[J].Frontiers in Plant Science,2012,3:259. |
43 | 陈国鹏,杨克彤,王立,等.甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J].植物生态学报,2020,44(10):1040-1049. |
44 | 左有璐,王振孟,习新强,等.川西北高寒草甸优势植物生物量分配对策[J].应用与环境生物学报,2018,136(6):3-11. |
45 | 马文红,方精云.中国北方典型草地物种丰富度与生产力的关系[J].生物多样性,2006,14(1):21-28. |
46 | Zhang K,Su Y Z,Yang R.Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor,northwest China[J].Journal of Plant Research,2017,130(4):699-708. |
47 | 马安娜,于贵瑞,何念鹏,等.中国草地植被地上和地下生物量的关系分析[J].第四纪研究,2014,34(4):769-776. |
48 | Bai Y F,Han X G,Wu J G,et al.Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J].Nature,2004,431:181-184. |
49 | Mittelbach G G,Steiner C F,Scheiner S M,et al.What is the observed relationship between species richness and productivity?[J].Ecology,2001,82(9):2381-2396. |
50 | 郭轶瑞,赵哈林,赵学勇,等.科尔沁沙质草地物种多样性与生产力的关系[J].干旱区研究,2007,24(2):198-203. |
51 | Berry G.Species richness and biomass:dissection of the hump-shaped relationships[J].Ecology,1998,79(7):2555-2559. |
52 | Tao Y,Zhou X B,Zhang J,et al.Humped relationship between herbaceous species richness and biomass reveals a potential for increasing productivity in a temperate desert in Central Asia[J].Polish Journal of Ecology,2020,68(1):67-83. |
53 | Chen S P,Wang W T,Xu W T,et al.Plant diversity enhances productivity and soil carbon storage[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(16):4027-4032. |
54 | Zang Y X,Min X J,De Dios V R,et al.Extreme drought affects the productivity,but not the composition,of a desert plant community in Central Asia differentially across microtopographies[J].Science of the Total Environment,2020,717:1-13. |
55 | Tilman D,Lehman C L,Thomson K T.Plant diversity and ecosystem productivity:theoretical considerations[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(5):1857-1861. |
56 | Wright J S.Plant diversity in tropical forests: a review of mechanisms of species coexistence[J].Oecologia,2002,130(1):1-14. |
57 | Mokany K,Raison R J,Prokushkin A S.Critical analysis of root:shoot ratios in terrestrial biomes[J].Global Change Biology,2010,12(1):84-96. |
58 | 邱娟,谭敦炎,樊大勇.准噶尔荒漠早春短命植物的光合特性及生物量分配特点[J].植物生态学报,2007(5):883-891. |
59 | Moechnig M J,Stoltenberg D E,Binning B L K.Empirical corn yield loss estimation from common lambsquarters (Chenopodium album) and giant foxtail (Setaria faberi) in mixed communities[J].Weed Science,2003,51(3):386-393. |
60 | Zhang R,Tielbrger K.Density-dependence tips the change of plant-plant interactions under environmental stress[J].Nature Communications,2020,11(1):25-32. |
61 | Zang L P,Xu H,Li Y D,et al.Conspecific negative density dependence of trees varies with plant functional traits and environmental conditions across scales in a 60-ha tropical rainforest dynamics plot[J].Biotropica,2021,53(2):693-702. |
62 | Luo Z R,Mi X C,Chen X R,et al.Density dependence is not very prevalent in a heterogeneous subtropical forest[J].Oikos,2012,121(8):1239-1250. |
63 | 杨元武,王根轩,李希来,等.植物密度调控及其对环境变化响应的研究进展[J].生态学杂志,2011(8):1813-1821. |
64 | 邓建明.水分梯度条件下植物群体调控的异速比例变化规律研究[D].兰州:兰州大学,2007. |
65 | Dai X F,Jia X,Zhang W P,et al.Plant height-crown radius and canopy coverage-density relationships determine above-ground biomass-density relationship in stressful environments[J].Biology Letters,2009,5(4):571-573. |
66 | 平晓燕,周广胜,孙敬松.植物光合产物分配及其影响因子研究进展[J].植物生态学报,2010(1):100-111. |
67 | 白燕远.植物地下和地上密度调控的差异随湿润度梯度变化的定量规律研究[D].杭州:浙江大学,2011. |
[1] | Tao Wang. The practice on prevention and control of aeolian desertification and the development of desert science in China for 70 years: Startups part [J]. Journal of Desert Research, 2022, 42(1): 1-4. |
[2] | Yingtao Sun, Yanpeng Yue, Long Cheng, Yingjun Pang, Heju Zhao, Bingqiang Fei, Xiaomin Xiu, Bo Wu, Yuxing Zhao, Lin Shi, Jinjun He, Xiaohong Jia. Responses of growth and biomass allocation of Artemisia ordosica to desertification in Mu Us Sandyland [J]. Journal of Desert Research, 2022, 42(1): 123-133. |
[3] | Xiaopeng Jia, Qimin Ma, Yinping Long, Haibing Wang. Soil evaporation monitored with medium-lysimeter in an artificial forest in the Hobq Desert, China [J]. Journal of Desert Research, 2022, 42(1): 211-222. |
[4] | Zhimin Liu, Haibin Yu. Discussion on ecological management of Horqin Sandy Land under the concept of "a living community of montains, waters, forests, farmlands, lakes, grasslands and sandylands" [J]. Journal of Desert Research, 2022, 42(1): 34-40. |
[5] | Zhizhong Li, Jianhui Jin, Rui Liu, Xihao Xie, Xiaojun Zou, Yunqiang Ma, Dianjia Tan. Review and prospect of aeolian geomorphology research in Gurbantunggut Desert, China [J]. Journal of Desert Research, 2022, 42(1): 41-47. |
[6] | Zhishan Zhang, Guisen Yang, Lü Xingyu, Rui Hu, Lei Huang. Research progresses in ecological stoichiometry of C, N and P in desert ecosystems [J]. Journal of Desert Research, 2022, 42(1): 48-56. |
[7] | Hui Zhao, Hongyu Yang, Xingfan Wang, Keqi Wang. Geochronology of the typical sediments in the Badain Jaran Desert: the progress and issues [J]. Journal of Desert Research, 2022, 42(1): 57-65. |
[8] | Hangyu Yang, Yanmei Liu, Guangyuan Luo, Fenglian Liu. Effects of bacterial-feeding nematodes on soil microbial biomass under biocrusts in desert areas [J]. Journal of Desert Research, 2021, 41(6): 120-125. |
[9] | Yani Wang, Yigang Hu, Zengru Wang, Changsheng Li. Impacts of reclamation on salinization desert soil microbial community: a case study of Alar oasis [J]. Journal of Desert Research, 2021, 41(6): 126-137. |
[10] | Xuexiang Chang, Huaishun Chen, Zhigang Li, Hongping Zhang. Species diversity of ecological restoration plant communities in typical desert areas of the Brahmaputra River Basin in Tibet [J]. Journal of Desert Research, 2021, 41(6): 187-194. |
[11] | Fanglin Wang, Qiushi Yu, Chengwu Chai, Lide Wang, Dekui Zhang, Yuqi Wang, Fei Wang, Xiaoke Hu. Allelopathic effects of Artemisia desertorum extracts on its own seed germination and seedling growth [J]. Journal of Desert Research, 2021, 41(6): 21-28. |
[12] | Dagang Wang, Yang Yu, Lingxiao Sun, Jing He, Malik Ireneusz, Wistuba Malgorzata, Fengqing Jiang, Ruide Yu. Adaptability evaluation and modification of ET0 models in a typical oases on southern margin of the Taklimakan Desert [J]. Journal of Desert Research, 2021, 41(6): 41-53. |
[13] | Jianhua Xiao, Jianhua Si, Chun Liu, Xuejun Li, Haiyang Xi, Tengfei Yu, Chengqi Zhang, Chunyan Zhao, Meng Zhu, Bing Jia. Concept, connotation and development model of Desert Energy Ecosphere [J]. Journal of Desert Research, 2021, 41(5): 11-20. |
[14] | Qimin Ma, Haibing Wang, Xiaopeng Jia. The radiation characteristics of artificial Caragana korshinskii shrub land in the Hobq Desert, China [J]. Journal of Desert Research, 2021, 41(5): 43-50. |
[15] | Kailu Liu, Xinping Wu, Yongqiang Liu, Mamtimin Ali, Fan Yang, Qing He. Estimation of hourly surface net radiation in Taklimakan Desert based on multi-source remote sensing data and reanalysis data [J]. Journal of Desert Research, 2021, 41(5): 51-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech