Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (2): 111-118.DOI: 10.7522/j.issn.1000-694X.2024.00162
Ying Zhai1(), Jiangli Pang1(
), Chunchang Huang1, Xiaochun Zha1, Yali Zhou1, Yuqin Li1, Yuzhu Zhang2, Xueqing Sun1, Xiaokang Zhao1
Received:
2024-10-24
Revised:
2024-11-18
Online:
2025-03-20
Published:
2025-03-26
Contact:
Jiangli Pang
CLC Number:
Ying Zhai, Jiangli Pang, Chunchang Huang, Xiaochun Zha, Yali Zhou, Yuqin Li, Yuzhu Zhang, Xueqing Sun, Xiaokang Zhao. Particle endmembers characteristics of Amiola-South profile in the Zoige Basin and recorded climate change since 15 ka BP[J]. Journal of Desert Research, 2025, 45(2): 111-118.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2024.00162
地层 | 深度/cm | 颜色和结构 |
---|---|---|
表土(MS) | 0~45 cm | 浊黄棕(10YR5/3),粉砂质地,团粒-团块结构,疏松多孔,含有密集的植物根系。在40~45 cm采集OSL-1 |
弱成壤(L-S) | 45~80 cm | 浊黄棕(10YR4/3),细砂质粉砂质地,团粒-团块构造,多细小孔隙。在70~75 cm采集OSL-2 |
黄土(L0) | 80~150 cm | 浊黄棕(10YR5/4),细砂质粉砂,块状构造,结构疏松无层理。在80~85、135~140、145~150 cm采集OSL-3、OSL-4、OSL-5 |
古土壤(S0) | 150~210 cm | 灰棕(7.5YR4/2),细砂粉砂质地,团粒-团块构造,含有大小孔隙,土壤成熟度高。在210~215 cm采集OSL-6 |
黄土(L) | 210~300 cm | 浊黄橙(10YR6/4),细砂质地,块状结构,下界清晰 |
湖相沉积(LS) | 300 cm~? | 浊黄(2.5YR6/4),厚层状分布,厚度超过3 m,向两侧稳定延伸。粉砂-中砂质地,粒状结构,比较疏松,质地、结构及颜色十分均匀、干净。水平层理比较发育,为湖相沉积物。在325~330 cm采集OSL-7 |
Table 1 Stratigraphic division and characteristics of AMOL-S profile
地层 | 深度/cm | 颜色和结构 |
---|---|---|
表土(MS) | 0~45 cm | 浊黄棕(10YR5/3),粉砂质地,团粒-团块结构,疏松多孔,含有密集的植物根系。在40~45 cm采集OSL-1 |
弱成壤(L-S) | 45~80 cm | 浊黄棕(10YR4/3),细砂质粉砂质地,团粒-团块构造,多细小孔隙。在70~75 cm采集OSL-2 |
黄土(L0) | 80~150 cm | 浊黄棕(10YR5/4),细砂质粉砂,块状构造,结构疏松无层理。在80~85、135~140、145~150 cm采集OSL-3、OSL-4、OSL-5 |
古土壤(S0) | 150~210 cm | 灰棕(7.5YR4/2),细砂粉砂质地,团粒-团块构造,含有大小孔隙,土壤成熟度高。在210~215 cm采集OSL-6 |
黄土(L) | 210~300 cm | 浊黄橙(10YR6/4),细砂质地,块状结构,下界清晰 |
湖相沉积(LS) | 300 cm~? | 浊黄(2.5YR6/4),厚层状分布,厚度超过3 m,向两侧稳定延伸。粉砂-中砂质地,粒状结构,比较疏松,质地、结构及颜色十分均匀、干净。水平层理比较发育,为湖相沉积物。在325~330 cm采集OSL-7 |
端元 | EM1 | EM2 | EM3 | EM4 | EM5 | <2 μm | Md |
---|---|---|---|---|---|---|---|
EM1 | 1 | ||||||
EM2 | 0.598** | 1 | |||||
EM3 | 0.386** | 0.105 | 1 | ||||
EM4 | 0.619** | 0.890** | 0.314** | 1 | |||
EM5 | 0.277* | 0.645** | 0.624** | 0.625** | 1 | ||
<2 μm | 0.903** | 0.776** | 0.239* | 0.740** | 0.421** | 1 | |
Md | 0.844** | 0.913** | 0.018 | 0.880** | 0.668** | 0.903** | 1 |
Table 2 Correlation analysis of each endmember component, <2 μm content and Md of AMOL-S profile
端元 | EM1 | EM2 | EM3 | EM4 | EM5 | <2 μm | Md |
---|---|---|---|---|---|---|---|
EM1 | 1 | ||||||
EM2 | 0.598** | 1 | |||||
EM3 | 0.386** | 0.105 | 1 | ||||
EM4 | 0.619** | 0.890** | 0.314** | 1 | |||
EM5 | 0.277* | 0.645** | 0.624** | 0.625** | 1 | ||
<2 μm | 0.903** | 0.776** | 0.239* | 0.740** | 0.421** | 1 | |
Md | 0.844** | 0.913** | 0.018 | 0.880** | 0.668** | 0.903** | 1 |
Fig.5 Comparison of magnetic susceptibility of AMOL-Sprofile (A) with Guizhou Dongge Cave stalagmites δ18O (B), Sediments from the Dalianhai Sea on the Tibetan Plateau δ18O (C), Guliya core on the Tibetan Plateau δ18O (D), pollen content of z10-C14 coniferous forest in red plain peat core (E), Maqu ZHK profile clay / coarse silt(F), Maqu DEQ-E profile CIA (G), holocene precipitation variability in northern China(H), and water variability in southern China in the Holocene (I)
1 | 吕连清,方小敏,鹿化煜,等.青藏高原东北缘黄土粒度记录的末次冰期千年尺度气候变化[J].科学通报,2004,11:1091-1098. |
2 | 庞奖励,黄春长,周亚利,等.玛曲谷地3 ka以来气候变化对黄河一级阶地土壤发育过程的影响[J].地质学报,2024,98(7):2269-2280. |
3 | 黄春长.若尔盖盆地河流古洪水沉积及其对黄河水系演变问题的启示[J].地理学报,2021,76(3):612-625. |
4 | 李焕.青藏高原若尔盖泥炭地孢粉记录的全新世以来植被和环境变化[D].兰州:兰州大学,2017. |
5 | Jia Y N, Zhang Y Z, Huang C C,et al.Late Pleistocene-Holocene aeolian loess-paleosol sections in the Yellow River source area on the northeast Tibetan Plateau:chronostratigraphy,sediment provenance,and implications for paleoclimate reconstruction[J].Catena,2022,208:10577. |
6 | 孙晓红,赵艳,李泉.青藏高原东部若尔盖盆地全新世泥炭地发育和植被变化[J].中国科学:地球科学,2017,47(9):1097-1109. |
7 | Chen D, Pang J L, Zhang Y Z,et al.Micromorphological characteristics and environmental significance of the Holocene aeolian loess-paleosol section in the Zoige Basin[J].Catena,2024,246:108415. |
8 | Wang Q F, Jin H J, Wu Q B,et al.Climatic evolution since 6 cal.ka B.P:recorded by frozen peat deposits in the source area of the Yellow River,northeastern Qinghai-Tibet Plateau[J].Quaternary Sciences,2017,37(2):402-415. |
9 | Zhou W J, Yu S Y, George S,et al.Postglacial changes in the Asian summer monsoon system:a pollen record from the eastern margin of the Tibetan Plateau[J].Boreas,2010,39:528-593. |
10 | 方小敏.青藏高原东部边缘及邻区马兰黄土成因与来源的初步研究[J].中国科学(B辑),1994,24(5):539-546. |
11 | 魏振海,董治宝,胡光印,等.若尔盖盆地沙丘形成分布影响因素探讨[J].中国沙漠,2009,29(6):1035-1042. |
12 | 胡光印,董治宝,张正偲,等.若尔盖盆地起沙风风况与输沙势特征[J].中国沙漠,2020,40(5):20-24. |
13 | 杜慧荣,谢远云,康春国,等.哈尔滨黄土的粒度与地球化学特征及其对粉尘物源的指示[J].中国沙漠,2020,40(1):64-76. |
14 | 周刚平,黄小忠,王宗礼,等.基于粒度数据重建的近2000 a新疆博斯腾湖区域风沙活动[J].中国沙漠,2019,39(2):86-95. |
15 | Zhao Y, Yu Z C, Zhao W W,et al.Holocene vegetation and climate histories in the eastern Tibetan Plateau:controls by insolation-driven temperature or monsoon-derived precipitation changes?[J].Quaternary Science Reviews,2011,30(9/10):1173-1184. |
16 | Paterson G A, Heslop D.New methods for unmixing sediment grain size data[J].Geochemistry Geophysics Geosystems,2015,16(12):4494-4506. |
17 | 陈海涛,孔凡彪,徐树建,等.庙岛群岛晚更新世以来黄土粒度端元揭示的粉尘堆积过程[J].第四纪研究,2021,41(5):1306-1316. |
18 | Glennie K W, Kenneth P.Aeolian dust and dust deposits[J].Eos Transactions American Geophysical Union,1988,69(4):861. |
19 | Sun D H, Bloemendal J,Rea,D K,et al.Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments,and numerical partitioning of the sedimentary components[J].Sedimentary Geology,2002,152(3):263-277. |
20 | Peng W, Yuan Y X, Yue L,et al.Provenance variations of the loess deposits in the East Asian monsoon boundary zone,Northeast China:response to the variations of climate and wind regimes[J].Catena,2023,222:106804. |
21 | Kong F, Xu S, Han M,et al.Application of grain size endmember analysis in the study of dust accumulation processes:a case study of loess in Shandong Province,East China[J].Sedimentary Geology,2021,416:105868. |
22 | Torre G, Gaiero D M, Sawakuchi A O,et al.Revisiting the chronology and environmental conditions for the accretion of late Pleistocene-early Holocene Pampean loess (Argentina)[J].Quaternary Science Reviews,2019,213:105-119. |
23 | Carolyn A, Dykoski R, Lawrence E,et al.A high-resolution,absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave,China[J].Earth and Planetary Science Letters,2005,233:71-86. |
24 | 吴铎.青藏高原达连海记录的末次盛冰期以来区域水文与夏季风变化研究[D].兰州:兰州大学,2019. |
25 | Thompson L G, Yao T D, Davis M E,et al.Ice core evidence for an orbital-scale climate transition on the northwest Tibetan Plateau[J].Quaternary Science Reviews,2024,324:108443. |
26 | Qin L, Wu H B, Cheng J,et al.Hydroclimatic changes in eastern China during the Holocene based on pollen data and climate modeling[J].Global and Planetary Change,2024,234:104391. |
27 | 陈豆,肖奇立,张玉柱,等.黄河源玛曲段全新世风成黄土-古土壤序列风化成壤特征以及古气候演变[J].地理研究,2022,41(8):2277-2294. |
28 | 赵晓康,庞奖励,黄春长,等.若尔盖盆地黄土-古土壤序列化学风化特征及环境意义[J].地理学报,2024,79(5):1177-1191. |
29 | Hao Y F, Han Y M, Shu P X,et al.Holocene wildfire on the Qinghai-Tibetan Plateau-witness of abrupt millennial timescale climate events[J].Quaternary Science Reviews,2023,321:108373. |
30 | Xiu L C, You G S, Jin C L,et al.Size-differentiated REE characteristics and environmental significance of aeolian sediments in the Ili Basin of Xinjiang,NW China[J].Journal of Asian Earth Sciences,2017,143:30-38. |
[1] | Zhenliang Yin, Rui Zhu, Chunshuang Fang, Huaqing Yang, Zexia Chen. Attribution analysis of runoff variations in the Changma River Basin based on the Budyko hypothesis [J]. Journal of Desert Research, 2024, 44(6): 110-121. |
[2] | Sen Li, Zongying Yang, Hongyan Zhao, Narentuya, Guixiang An, Jiali Xie, Xiaopeng Jia, Changzhen Yan. Spatio-temporal changes of aeolian desertification in the Jiziwan of the Yellow River from 1975 to 2020 [J]. Journal of Desert Research, 2024, 44(5): 13-22. |
[3] | Zhenzi He, Bingxin Xu, Wenjing Liu, Yigang Hu. Carbon exchange of desert soil crust in response to simulated warming and changes of precipitation [J]. Journal of Desert Research, 2024, 44(3): 269-278. |
[4] | Jianhui Ge, Bing Liu, Yujie Xu, Aijun Sun, Keqi Wang, Dongxue Li, hui Zhao. Interrelationships between climate change and surface processes in the First Meander of the Yellow River since the Last Deglaciation [J]. Journal of Desert Research, 2024, 44(2): 121-132. |
[5] | Yang Chen, Ping Lv, Min Cao, Zishu Xia, Fang Ma, Junlin Yu. Microclimate characteristics of Tengger Desert lakes and its response to climate change [J]. Journal of Desert Research, 2024, 44(2): 231-238. |
[6] | Qing Li, Na Zhou, Sheng Wang, Tongzhou Li, Rende Wang, Jinfeng Wang. Quantitative assessment the impacts of climate change and human actives on wind erosion: a case study of Inner Mongolia Autonomous Region [J]. Journal of Desert Research, 2024, 44(1): 178-188. |
[7] | Xiao Feng, Jianjun Qu, Xinhui Ding, Qin Tian, Qingbin Fan. Temporal and spatial pattern of NPP in Yulin and its influencing factors during the desertification reversal [J]. Journal of Desert Research, 2024, 44(1): 22-32. |
[8] | Yanzhuo Zhao, Yuanyun Xie, Chunguo Kang, Yunping Chi, Lei Sun, Peng Wu, Zhenyu Wei. Holocene climate change recorded by paleosoil profile in Hulun Buir Sandy Land [J]. Journal of Desert Research, 2023, 43(5): 85-96. |
[9] | Jianbing Lu, Ke Ju, Weibin Liao. Variation in NDVI and its response to climate change and human activities in Gansu Province during 2000-2020 [J]. Journal of Desert Research, 2023, 43(4): 118-127. |
[10] | Qi You, Baorong Xu, Songbing Zou, Yihao Qin, Duo Wang, Dong Yu. The vegetation-climate quantitative relationship and characteristics in arid and semi-arid region of northern China [J]. Journal of Desert Research, 2023, 43(4): 274-287. |
[11] | Yaozong Wang, Xinbin Yue, Jiali Xie, Zhipeng Liu, Yuan Ma, Yahui Wang, Yan Gong. Desertification evolution in the sandy region to the east of the Yellow River in Ningxia from 2000 to 2020 [J]. Journal of Desert Research, 2023, 43(4): 31-40. |
[12] | Pengfei Liang, Huijuan Xin, Zongxing Li, Fusen Nan, Biao Tang, Wenbao Zhang. Study on the attribution of runoff variation in the Danghe River based on the Budyko hypothesis [J]. Journal of Desert Research, 2023, 43(3): 210-219. |
[13] | Ran Duan, Zongjie Li, Yu Wang, Xiaoying Liu, Juan Gui, Pengfei Liang, Yuchen Li, Jian Xue, Mengqing Liu, Bin Xu. Characteristics of runoff change in the Shiyang River Basin [J]. Journal of Desert Research, 2023, 43(3): 57-68. |
[14] | Ziyan Han, Jijun Meng, Yi Zou, Likai Zhu. Vegetation dynamics and their response to climate change and ecological protection projects in the Heihe River Basin from 1982 to 2017 [J]. Journal of Desert Research, 2023, 43(3): 96-106. |
[15] | Chunming Xin, Mingzhu He, Chengyi Li, Libin Zhang, Xinrong Li. A review of research progress on nitrous oxide emissions from desert soil and its driving factors [J]. Journal of Desert Research, 2023, 43(2): 184-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech