Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (5): 217-229.DOI: 10.7522/j.issn.1000-694X.2025.00119
Guangwei Zhao1(), Xiangwen Niu5, Cunlin Bai5, Yanrong Meng1, Yuqing Zhang1,3,4, Shugao Qin2, Weiwei She2, Wei Feng2(
)
Received:
2025-02-11
Revised:
2025-05-15
Online:
2025-09-20
Published:
2025-09-27
Contact:
Wei Feng
CLC Number:
Guangwei Zhao, Xiangwen Niu, Cunlin Bai, Yanrong Meng, Yuqing Zhang, Shugao Qin, Weiwei She, Wei Feng. Screening, identification and carbon fixation capacity assessment of chemolithoautotrophic microorganisms in biological soil crusts of Mu Us Sandy Land[J]. Journal of Desert Research, 2025, 45(5): 217-229.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00119
编号 | 拉丁名 | 种名 | 相似度/% | 属名 | 门名 | 菌落特征 |
---|---|---|---|---|---|---|
1 | Rhodococcus fascians | 筋膜红球菌 | 100 | 红球菌属 | 放线菌门 | 黄色、圆形、表面光滑、凸面边缘整齐 |
2 | Methylobacterium aminovorans | 氨基沃兰甲基杆菌 | 99.78 | 甲基杆菌属 | 变形菌门 | 红色、圆形、表面光滑、单菌落小 |
3 | Streptomyces phaeoluteigriseus | 黄链霉菌 | 99.65 | 链霉菌属 | 放线菌门 | 淡黄色、圆形、扩展、无明显粉状孢子 |
4 | Streptomyces venezuelae | 委内瑞拉链霉菌 | 99.79 | 链霉菌属 | 放线菌门 | 白色、圆形、中凹台状、粉状孢子 |
5 | Streptomyces flavogriseus | 黄灰链霉菌 | 100 | 链霉菌属 | 放线菌门 | 黄色、卷发状、粗糙、中凹台状 |
6 | Streptomyces anulatus | 无核链霉菌 | 100 | 链霉菌属 | 放线菌门 | 淡黄色、同心环状、粗糙、粉状孢子 |
7 | Arthrobacter nitroguajacolicus | 硝基瓜菌关节杆菌 | 99.93 | 节杆菌属 | 放线菌门 | 淡黄色、凸面、黏稠、表面光滑 |
8 | Saccharothrix texasensis | 德克萨斯糖丝菌 | 99.78 | 糖丝菌属 | 放线菌门 | 白色、卷发状、中凹台状、粗糙 |
9 | Saccharothrix espanaensis | 西班牙糖丝菌 | 99.49 | 糖丝菌属 | 放线菌门 | 白色、覆轮状、粗糙、边缘整齐 |
10 | Streptomyces lavendofoliae | 薰衣草链霉菌 | 100 | 链霉菌属 | 放线菌门 | 白色、圆形、菌丝体状、粉状孢子 |
11 | Streptomyces phaeochromogenes | 显色链霉菌 | 100 | 链霉菌属 | 放线菌门 | 粉红色、圆形、同心环 、粉状孢子 |
12 | Streptomyces gulbargensis | 古尔巴根链霉菌 | 100 | 链霉菌属 | 放线菌门 | 粉红色、椭圆形、同心环 、粉状孢子 |
13 | Actinoplanes teichomyceticus | 泰式放线菌 | 98.54 | 游动放线菌属 | 放线菌门 | 橙黄色、不规则状、较硬、无明显粉状孢子 |
14 | Streptomyces griseiscabiei | 灰色链霉菌 | 99.86 | 链霉菌属 | 放线菌门 | 黄色、不规则状、粉状孢子 |
15 | Acinetobacter calcoaceticus | 醋酸钙不动杆菌 | 100 | 不动杆菌属 | 变形菌门 | 白色、黏稠湿润、圆形、凸面边缘整齐 |
16 | Saccharothrix ghardaiensis | 加纳糖丝酵母 | 99.28 | 糖丝菌属 | 放线菌门 | 白色、粗糙、不规则状、中凹台状 |
17 | Streptomyces zaomyceticus | 早霉素链霉菌 | 100 | 链霉菌属 | 放线菌门 | 粉红色、圆形、菌丝体状、粉状孢子 |
18 | Streptomyces viridochromogenes | 绿色产色链霉菌 | 99.71 | 链霉菌属 | 放线菌门 | 淡黄色、圆形、粉状孢子 |
Table 1 Identification results of chemoautotrophic strains
编号 | 拉丁名 | 种名 | 相似度/% | 属名 | 门名 | 菌落特征 |
---|---|---|---|---|---|---|
1 | Rhodococcus fascians | 筋膜红球菌 | 100 | 红球菌属 | 放线菌门 | 黄色、圆形、表面光滑、凸面边缘整齐 |
2 | Methylobacterium aminovorans | 氨基沃兰甲基杆菌 | 99.78 | 甲基杆菌属 | 变形菌门 | 红色、圆形、表面光滑、单菌落小 |
3 | Streptomyces phaeoluteigriseus | 黄链霉菌 | 99.65 | 链霉菌属 | 放线菌门 | 淡黄色、圆形、扩展、无明显粉状孢子 |
4 | Streptomyces venezuelae | 委内瑞拉链霉菌 | 99.79 | 链霉菌属 | 放线菌门 | 白色、圆形、中凹台状、粉状孢子 |
5 | Streptomyces flavogriseus | 黄灰链霉菌 | 100 | 链霉菌属 | 放线菌门 | 黄色、卷发状、粗糙、中凹台状 |
6 | Streptomyces anulatus | 无核链霉菌 | 100 | 链霉菌属 | 放线菌门 | 淡黄色、同心环状、粗糙、粉状孢子 |
7 | Arthrobacter nitroguajacolicus | 硝基瓜菌关节杆菌 | 99.93 | 节杆菌属 | 放线菌门 | 淡黄色、凸面、黏稠、表面光滑 |
8 | Saccharothrix texasensis | 德克萨斯糖丝菌 | 99.78 | 糖丝菌属 | 放线菌门 | 白色、卷发状、中凹台状、粗糙 |
9 | Saccharothrix espanaensis | 西班牙糖丝菌 | 99.49 | 糖丝菌属 | 放线菌门 | 白色、覆轮状、粗糙、边缘整齐 |
10 | Streptomyces lavendofoliae | 薰衣草链霉菌 | 100 | 链霉菌属 | 放线菌门 | 白色、圆形、菌丝体状、粉状孢子 |
11 | Streptomyces phaeochromogenes | 显色链霉菌 | 100 | 链霉菌属 | 放线菌门 | 粉红色、圆形、同心环 、粉状孢子 |
12 | Streptomyces gulbargensis | 古尔巴根链霉菌 | 100 | 链霉菌属 | 放线菌门 | 粉红色、椭圆形、同心环 、粉状孢子 |
13 | Actinoplanes teichomyceticus | 泰式放线菌 | 98.54 | 游动放线菌属 | 放线菌门 | 橙黄色、不规则状、较硬、无明显粉状孢子 |
14 | Streptomyces griseiscabiei | 灰色链霉菌 | 99.86 | 链霉菌属 | 放线菌门 | 黄色、不规则状、粉状孢子 |
15 | Acinetobacter calcoaceticus | 醋酸钙不动杆菌 | 100 | 不动杆菌属 | 变形菌门 | 白色、黏稠湿润、圆形、凸面边缘整齐 |
16 | Saccharothrix ghardaiensis | 加纳糖丝酵母 | 99.28 | 糖丝菌属 | 放线菌门 | 白色、粗糙、不规则状、中凹台状 |
17 | Streptomyces zaomyceticus | 早霉素链霉菌 | 100 | 链霉菌属 | 放线菌门 | 粉红色、圆形、菌丝体状、粉状孢子 |
18 | Streptomyces viridochromogenes | 绿色产色链霉菌 | 99.71 | 链霉菌属 | 放线菌门 | 淡黄色、圆形、粉状孢子 |
编号 | 淀粉水解 | 纤维素水解 | 尿素水解 | 明胶水解 |
---|---|---|---|---|
1 | — | — | 24 h | — |
2 | — | — | 36 h | — |
3 | 1.38±0.02ab | 4.33±0.17h | — | — |
4 | 5.00±0.07h | 1.13±0.09a | 12 h | 10 d |
5 | 5.60±0.12i | 3.22±0.04f | — | — |
6 | 3.64±0.04g | 4.20±0.10h | 48 h | 5 d |
7 | 1.76±0.07d | — | 36 h | — |
8 | — | — | — | — |
9 | 3.00±0.11f | 3.00±0.05e | — | — |
10 | 1.50±0.05bc | 2.33±0.08c | — | — |
11 | 2.31±0.06e | 3.38±0.11f | — | — |
12 | — | 3.67±0.13g | 48 h | — |
13 | 1.36±0.03a | — | — | — |
14 | 2.19±0.10e | 1.60±0.02b | 36 h | — |
15 | — | — | 24 h | — |
16 | 1.57±0.04c | — | — | — |
17 | — | 3.27±0.07f | — | — |
18 | — | 2.63±0.14d | — | — |
Table 2 Hydrolysis capacity of carbon-fixing strains
编号 | 淀粉水解 | 纤维素水解 | 尿素水解 | 明胶水解 |
---|---|---|---|---|
1 | — | — | 24 h | — |
2 | — | — | 36 h | — |
3 | 1.38±0.02ab | 4.33±0.17h | — | — |
4 | 5.00±0.07h | 1.13±0.09a | 12 h | 10 d |
5 | 5.60±0.12i | 3.22±0.04f | — | — |
6 | 3.64±0.04g | 4.20±0.10h | 48 h | 5 d |
7 | 1.76±0.07d | — | 36 h | — |
8 | — | — | — | — |
9 | 3.00±0.11f | 3.00±0.05e | — | — |
10 | 1.50±0.05bc | 2.33±0.08c | — | — |
11 | 2.31±0.06e | 3.38±0.11f | — | — |
12 | — | 3.67±0.13g | 48 h | — |
13 | 1.36±0.03a | — | — | — |
14 | 2.19±0.10e | 1.60±0.02b | 36 h | — |
15 | — | — | 24 h | — |
16 | 1.57±0.04c | — | — | — |
17 | — | 3.27±0.07f | — | — |
18 | — | 2.63±0.14d | — | — |
[1] | Houghton R A, Skole D L, Nobre C A,et al.Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J].Nature,2000,403(6767):301-304. |
[2] | 冯晓娟,戴国华,刘婷,等.从生物地球化学视角理解土壤碳封存的机制和潜在途径[J].中国科学:地球科学,2024,54(11):3421-3432. |
[3] | Ma T, Zhu S S, Wang Z H,et al.Divergent accumulation of microbial necromass and plant lignin components in grassland soils[J].Nature Communications,2018,9:3480. |
[4] | Hicks N, Vik U, Taylor P,et al.Using prokaryotes for carbon capture storage[J].Trends in Biotechnology,2017,35(1):22-32. |
[5] | Plaza C, Pegoraro E, Bracho R,et al.Direct observation of permafrost degradation and rapid soil carbon loss in tundra[J].Nature Geoscience,2019,12(8):627-631. |
[6] | 张杰,李敏,敖子强,等.中国西部干旱区土壤有机碳储量估算[J].干旱区资源与环境,2018,32(9):132-137. |
[7] | Xu H K, Zhang Y J, Shao X Q,et al.Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands:a meta-analysis[J].Science of the Total Environment,2022,803:150030. |
[8] | 李新荣,谭会娟,回嵘,等.中国荒漠与沙地生物土壤结皮研究[J].科学通报,2018,63(23):2320-2334. |
[9] | Zhang Y M, Chen J, Wang L,et al.The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang,China[J].Journal of Arid Environments,2007,68(4):599-610. |
[10] | Belnap J, Gillette D A.Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in Southeastern Utah[J].Land Degradation & Development,1997,8(4):355-362. |
[11] | 张清杭,吕杰,马媛,等.古尔班通古特沙漠不同区域藻类结皮微生物结构和潜在功能[J].生态学报,2024,44(14):6317-6330. |
[12] | Liu Y B, Zhao L N, Wang Z R,et al.Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the Tengger Desert[J].Soil Biology and Biochemistry,2018,126:40-48. |
[13] | 李凯凯,张丙昌,赵康,等.毛乌素沙地固碳功能菌群落随生物结皮发育阶段的演变特征[J].生态学报,2024,44(3):1177-1190. |
[14] | Rossi F, Olguin E J, Diels L,et al.Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification[J].New Biotechnology,2015,32(1):109-120. |
[15] | Kheirfam H.Increasing soil potential for carbon sequestration using microbes from biological soil crusts[J].Journal of Arid Environments,2020,172:104022. |
[16] | 郑云普,张丙昌,赵建成,等.具鞘微鞘藻在荒漠藻结皮形成过程中的作用[J].生态学报,2010,30(6):1655-1664. |
[17] | 许文文,赵燕翘,王楠,等.人工蓝藻结皮对沙区表层土壤酶活性及其恢复速率的影响[J].生态学报,2023,43(7):2856-2864. |
[18] | 熊文君,徐琳,张丙昌,等.生物土壤结皮结构、功能及人工恢复技术[J].干旱区资源与环境,2021,35(2):190-195. |
[19] | 张丙昌,王敬竹,张元明,等.水分对具鞘微鞘藻构建人工藻结皮的作用[J].应用生态学报,2013,24(2):535-540. |
[20] | 邓杰文,石杨,李斌,等.微生物在沙化土壤修复中的应用研究进展[J].应用与环境生物学报,2022,28(5):1367-1374. |
[21] | 韩东东,郝振宇,高广海,等.寡营养细菌及其生态作用和应用的研究进展[J].微生物学通报,2012,39(4):526-535. |
[22] | Zhao K, Zhang B C, Li J N,et al.The autotrophic community across developmental stages of biocrusts in the Gurbantunggut Desert[J].Geoderma,2021,388:114927. |
[23] | 刘娟,刘华民,卓义,等.毛乌素沙地1990-2014年景观格局变化及驱动力[J].草业科学,2017,34(2):255-263. |
[24] | 李宜坪.毛乌素沙地生物结皮及其下伏土壤的养分特征与碳储量研究[D].杨凌:西北农林科技大学,2018. |
[25] | 肖媛媛,冯薇,乔艳桂,等.固沙灌木林地土壤微生物群落特征对土壤多功能性的影响[J].生物多样性,2023,31(4):128-141. |
[26] | 翟树琛,王天娇,李鑫豪,等.毛乌素沙地黑沙蒿水分利用效率环境调控:从叶片到生态系统[J].应用生态学报,2024,35(4):997-1006. |
[27] | 陈翔,刘树林,彭飞,等.中分辨率遥感像元尺度生物土壤结皮覆盖与植被及土壤间的交互关系[J].生态学报,2022,42(18):7336-7348. |
[28] | Bai Y X, She W W, Miao L,et al.Soil microbial interactions modulate the effect of Artemisia ordosica on herbaceous species in a desert ecosystem, Northern China[J].Soil Biology and Biochemistry,2020,150:108013. |
[29] | 王莉,秦树高,张宇清,等.生物土壤结皮对毛乌素沙地油蒿群落土壤水分的影响[J].北京林业大学学报,2017,39(3):48-56. |
[30] | 郭珺,樊芳芳,王立革,等.固碳微生物菌株的分离鉴定及其固碳能力测定[J].生物技术通报,2019,35(1):90-97. |
[31] | 卢彩鸽,董红平,张殿朋,等.解淀粉芽胞杆菌MH71摇瓶发酵培养基及发酵条件优化[J].中国生物防治学报,2015,31(3):369-377. |
[32] | 林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010. |
[33] | 冯克宽,王明谊.黑曲霉Sta-122菌株产纤维素酶的研究[J].西北师范大学学报(自然科学版),1991(1):61-65. |
[34] | 付丽,朱红雨,杜明楠,等.秸秆降解菌株的筛选、鉴定及生物学特性研究[J].中国农业大学学报,2018,23(12):39-49. |
[35] | 黄臣,韩玲娟,梁银萍,等.达乌里胡枝子四株耐盐碱根际促生菌的鉴定及其促生作用[J].草地学报,2023,31(4):1036-1047. |
[36] | 任良栋,许团辉,徐权汉,等.一株高产DHA菌株的筛选及其发酵条件优化[J].中国油脂,2016,41(5):60-64. |
[37] | 孙永琦.毛乌素沙地地衣结皮层微生物的群落结构及其固碳功能[D].北京:北京林业大学,2019. |
[38] | 吴楠,潘伯荣,张元明,等.古尔班通古特沙漠生物结皮中土壤微生物垂直分布特征[J].应用与环境生物学报,2005(3):349-353. |
[39] | Wang Y, Hong Y, Tian Y L,et al.Changes in bacterial community composition and soil properties altered the response of soil respiration to rain addition in desert biological soil crusts[J].Geoderma,2022,409:115635. |
[40] | 李靖宇,张肖冲,陈韵,等.腾格里沙漠东南缘藻结皮与藓结皮放线菌多样性及其潜在代谢功能[J].生态学报,2020,40(5):1590-1601. |
[41] | 张娅,曹成亮,李荣鹏,等.糖丝菌属放线菌研究进展[J].微生物学报,2022,62(5):1600-1612. |
[42] | An D S, Wang L, Kim M S. Solirubrobacter ginsenosidimutans sp nov., isolated from soil of a ginseng field[J].International Journal of Systematic and Evolutionary Microbiology,2011,61(11):2606-2609. |
[43] | Jones S E, Elliot M A. Streptomyces exploration: competition, volatile communication and new bacterial behaviours[J].Trends in Microbiology,2017,25(7):522-531. |
[44] | 张雅丽,张丙昌,赵康,等.毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J].生物多样性,2023,31(8):83-93. |
[45] | 代芳平,李师翁.链霉菌次级代谢物及其应用研究进展[J].生物技术通报,2014,30(3):30-35. |
[46] | Liu Z, Zhang Y Q, Fa K Y,et al.Desert soil bacteria deposit atmospheric carbon dioxide in carbonate precipitates[J].Catena,2018,170:64-72. |
[47] | 黄倩.黄土高原土壤固碳微生物及其固定CO2的机理[D].杨凌:西北农林科技大学,2021. |
[48] | 冉光娟.荔波喀斯特洞穴沉积物中可培养固碳固氮细菌多样性分析及新种鉴定[D].贵阳:贵州师范大学,2022. |
[49] | 李彦林,陈吉祥,周永涛,等.西北半干旱荒漠草原与耕地土壤可培养微生物多样性及分布特征比较[J].农业资源与环境学报,2016,33(3):244-252. |
[50] | 刘振.毛乌素沙地土壤固定大气二氧化碳的微生物途径[D].北京:北京林业大学,2019. |
[51] | Lynn T M, Ge T D, Yuan H Z,et al.Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems[J].Microbial Ecology,2017,73(3):645-657. |
[52] | Liu Z, Sun Y F, Zhang Y Q,et al.Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert[J].Soil Biology and Biochemistry,2018,125:156-166. |
[53] | Zhao K, Kong W D, Wang F,et al.Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils[J].Soil Biology and Biochemistry,2018,127:230-238. |
[54] | Long X E, Yao H Y, Wang J,et al.Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils[J].Environmental Science & Technology,2015,49(12):7152-7160. |
[55] | Nowak M E, Beulig F, von Fischer J,et al.Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette[J].Biogeosciences,2015,12(23):7169-7183. |
[56] | 程澳琪.固碳微生物的分离及其对不同状态岩溶湿地土壤的固碳能力研究[D].武汉:华中科技大学,2022. |
[57] | Huang W C, Liu Y, Zhang X X,et al.Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota[J].Nature Communications,2021,12(1):5281. |
[58] | Oda Y, Nelson W C, Alexander W G,et al.A Rhodopseudomonas strain with a substantially smaller genome retains the core metabolic versatility of its genus[J].Applied and Environmental Microbiology,2025,91(4):e02056-24. |
[59] | 冉光娟,吴庆珊,方正,等.喀斯特洞穴沉积物中可培养固碳和固氮细菌多样性分析[J].云南大学学报(自然科学版),2024,46(2):379-391. |
[1] | gaowa Saren, Yuanyuan Zhao, Xinzhi Geng, Yue Wang, Guanglei Gao. Sustainability assessment of the human-earth system in the sandy areas of Inner Mongolia from 2000 to 2020 [J]. Journal of Desert Research, 2025, 45(2): 71-82. |
[2] | Jiaqi Wang, Xiaomei Li, Xiaokang Liu, Miao Dong. Landscape pattern and variation of riparian dunes and the aeolian-fluvial interaction in the upper reaches of Wuding River in Mu Us Sandy Land [J]. Journal of Desert Research, 2024, 44(3): 31-41. |
[3] | Jiaxin Feng, Yueru Wu, Shuo Qiao, Xiya Liu, Haibing Wang. Characteristics of changes in soil components and trace element contents during the reversal of desertification in Mu Us Sandy Land [J]. Journal of Desert Research, 2024, 44(1): 218-227. |
[4] | Rongrong Wang, Jin Fan, Shixiang Cong, Hailong Yu, Juying Huang. Enzyme activity characteristics and their influencing factors of different biocrusts around thermal plant in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(4): 209-219. |
[5] | Yaofang Shi, Xian Xue, Quangang You, Fei Peng, Cuihua Huang. Distribution characteristics of soil organic carbon and its relationship with soil physical properties in Ali Desert Area, Tibetan Plateau [J]. Journal of Desert Research, 2023, 43(3): 284-294. |
[6] | Guangyu Hong, Xiaojiang Wang, Qingpu Su, Long Hai, Shaokun Wang, Xiaowei Gao, Yanyan Xu, Jingshan Zhou, Zhuofan Li, Zihao Li, Ercha Hu. Simulation of soil moisture and leakage characteristics of mobile dunes in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(2): 288-298. |
[7] | Xuying Bai, Yujie Wang, Yunqi Wang, Wenbin Yang, Tao Wang, Yiben Cheng. Changes and driving factors of water body area in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(2): 65-73. |
[8] | Yuzhe Yang, Dapeng Yue, Jingbo Zhao, Yiting Liu, Jianing Li, Tianyu Yang. Chroma characteristics and its paleoclimatic significance of L3 and S3 loess-paleosol in the southeast margin of Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(1): 176-186. |
[9] | Hongmei Liu, Haibing Wang, Kuan Li, Xiya Liu, Yuyan Ren, Yandong Zhang. Structure, benefits and behavior of farmers and herdsmen of the Kulun ecological economic circle in Mu Us Sandy Land [J]. Journal of Desert Research, 2023, 43(1): 48-57. |
[10] | Xiaohan Chen, Yongsheng Wu, Chunxing Hai. Effects of surface dew under different types of sand-fixing shrubs in the southern margin of Mu Us Sandy Land, Northern China [J]. Journal of Desert Research, 2023, 43(1): 83-95. |
[11] | Guangyu Hong, Xiaojiang Wang, Tieshan Liu, Hailong, Zhenting Wu, Huercha, Xiaowei Gao, Haifeng Yang, Zhuofan Li, Zihao Li, Siqin, Lejun Wang. Applicability of Hydrus-1D Model in simulating the soil moisture in Hedysarum leave in Mu Us Sandy Land, China [J]. Journal of Desert Research, 2022, 42(6): 233-242. |
[12] | Lixia Gu, Ping Lv, Fang Ma, Guoxiang Chen, Zhun Liang, Mingjing Xu, Ying Yang. Drift potential characteristics of Mu Us Sandy Land calculated with different data sources [J]. Journal of Desert Research, 2022, 42(5): 54-62. |
[13] | Xinying Liu, Ming Jin, Fan Yang, Yapeng Ma, Hui Liu, Xiaoyun Sun, Dunsheng Xia. A preliminary study of environmental changes since middle Holocene and its impacts on the evolution of civilization in the eastern Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(5): 92-100. |
[14] | Yuyan Ren, Yufeng Zheng, Yandong Zhang, Haibing Wang, Shiqiang Wang, Jinjun He. Evaluation on development sustainability of kulun eco-economic circle in the Mu Us Sandy Land [J]. Journal of Desert Research, 2022, 42(4): 264-272. |
[15] | Honglin Lian, Xueying Han, Yali Liu, Yuqing Han, Wenbin Yang, Wei Xiong. Study on spatiotemporal characteristics of atmospheric drought from 1981 to 2020 in the Mu Us Sandy Land of China based on SPEI index [J]. Journal of Desert Research, 2022, 42(4): 71-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech